
    NeuroImage 175 (2018) 12–21 
     

 

   

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 
         
        

  

             

            
               
           

Correlation of neural activity with behavioral kinematics reveals distinct 
sensory encoding and evidence accumulation processes during active 
tactile sensing 

Ioannis Delis a, Jacek P. Dmochowski b, Paul Sajda a,c,*, Qi Wang a,* 

a Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA 
b Department of Biomedical Engineering, City College of New York, New York, NY, 10031, USA 
c Data Science Institute, Columbia University, New York, NY, 10027, USA 
  

 
   

  
 

 
   

    

A R T I C L E  I N F O  

Keywords: 
Active tactile sensing 
Perceptual decision-making 
EEG 
Pantograph 
Canonical correlation analysis 
Hierarchical drift diffusion model 
     
    

       
     

      

* Corresponding authors. Department of Biomedi
E-mail addresses: psajda@columbia.edu (P. Sajd

https://doi.org/10.1016/j.neuroimage.2018.03.035
Received 29 December 2017; Received in revised f
Available online 23 March 2018 
1053-8119/© 2018 Elsevier Inc. All rights reserved
 

                  
               

                 
               

          
              

               
               

              
               

               
          

                 
             

               
               

           

A B S T R A C T  

Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) 
across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on 
identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an 
object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile 
decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while sub-
jects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision 
formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would 
be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that 
three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), 
and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly 
correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-
couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that 
the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information 
integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control 
subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural 
correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first 
time, the functional role of cortical areas in active tactile decision-making. 
 

          
          
            

         
           
            
             

          
              

         
            

         

Introduction 

Perceptual decisions rely on the integration of sensory evidence from 
the environment (Heekeren et al., 2004; Hanks and Summerfield, 2017). 
The quality of sensory evidence depends highly on our actions, as our 
movements affect how we sample, process and integrate information 
from the external world (Najemnik and Geisler, 2005; Renninger et al., 
2007; Navalpakkam et al., 2010; Schroeder et al., 2010; Chukoskie et al., 
2013; Toscani et al., 2013; Yang et al., 2016a; Tomassini et al., 2017; 
Tomassini and D'Ausilio, 2017). Hence, to optimize the speed and ac-
curacy of our perceptual decisions we need to direct our actions so as to 
efficiently gather sensory information, a process called active sensing 
(Kleinfeld et al., 2006; Yang et al., 2016b). Importantly, the processing of 
sensory information acquired actively and its translation into perceptual 
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choices requires the interaction of multiple neural processes (and 
consequently multiple brain areas) over time (Philiastides and Sajda, 
2006, 2007; Heekeren et al., 2008; Summerfield and de Lange, 2014; 
Rahnev et al., 2016). However, despite recent scientific interest in active 
sensing and decision-making, its neural underpinnings remain poorly 
understood. 

Here we address this gap using a response-time active tactile decision-
making task in which we simultaneously measured the electroencepha-
logram (EEG), active sensing behavior (movement kinematics) and task 
performance (accuracy and response time - RT) of subjects, the goal being 
to uncover the patterns of neural activity and sensorimotor behavior that 
drive active perceptual decisions. 

To achieve this goal, we proceed in two steps. We first aim to char-
acterize prominent components of active sensing brain entrainment. To 
      
 

    

rsity, New York, NY, 10027, USA. 
ang). 

 17 March 2018 

mailto:psajda@columbia.edu
mailto:qi.wang@columbia.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2018.03.035&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2018.03.035
https://doi.org/10.1016/j.neuroimage.2018.03.035
https://doi.org/10.1016/j.neuroimage.2018.03.035


        

          
              
             

            
 

  

                
            

           
                

             
            

             
            

           

            
              

               
              

          
          

             
            

           
  

    

 

0 

6 

5 

4 

3 

2 

1 

-0.3 

0.3 

-0.2 

I. Delis et al. NeuroImage 175 (2018) 12–21 

Fig. 1. Experimental design, behavioral results and principal components of 
EEG signals. A. The Pantograph is a haptic device used to render virtual surfaces 
that can be actively sensed. B. The stimulus. We programmed the Pantograph to 
generate a virtual grating texture. The workspace was split into two subspaces 
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this end, we correlate the recorded EEG signals with the behavioral ki-
nematics and extract components of neural activity coupled with com-
ponents of sensorimotor behavior. Specifically, we hypothesize that 
changes in the speed with which subjects explore the tactile stimulus are 
indicative of the strategy they employ for acquiring and accumulating 
perceptual information and thus reflect active sensing behavior. Hence, 
we use the velocity profiles of the finger movements performed on each 
trial as correlates of the EEG recordings in order to uncover the neural 
underpinnings of active tactile sensing. The main advantage of this 

with measures that directly quantify the coupling between the compo-
methodology is that it replaces unspecific measures of neural activations 

nents of continuous finger movement and brain activity, thereby tapping 
more directly into the neural correlates of tactile active exploration. 

We further hypothesize that one's active sensing behavior, and the 
neural activity that underlies it, provides a view into the processes 
leading to decision formation. Thus, we ask if the perceptual, cognitive 

principled approach to investigate whether the neural representations of 
active tactile sensory processing drive decision formation and enables 
one to identify which of its integral processes may be predictive of
behavior. Ultimately, we find that two distinct processes, namely tactile 

and motor processes involved in active tactile decision-making are 
modulated by the strength of the identified brain-behavior couplings. To 
dissect the constituent processes of decision-making during active 
sensing we employ a hierarchical drift diffusion model (HDDM) analysis. 
To assess if these processes bear any relation to the extracted brain-
behavior correlated components, we integrate the HDDM with a 
regression analysis that uses the brain-behavior correlations as predictors 
for the HDDM parameters. The HDDM framework therefore provides a 

stimulus encoding and evidence accumulation, are driven by two distinct 
components of brain-behavior coupling. 

Materials and methods 

Active tactile texture discrimination task 

Fifteen healthy right-handed subjects (6 female, aged 26 2 years) 
performed a two-alternative forced choice (2AFC) texture discrimination 
task during which they had to compare the amplitudes of two sinusoidal 
textures of the same frequency. All experimental procedures have been 
reviewed and approved by the Institutional Review Board (IRB) at
Columbia University. 

Subjects performed the task using a haptic device, called a Panto-
graph (Campion et al., 2005; Frissen et al., 2012), which can be 
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judiciously programmed to generate tactile sensations that resemble 
exploring real surfaces (see Fig. 1A). For this binary discrimination task, 
the workspace of the Pantograph (of dimensions 110 mm 60 mm) was 
split into two subspaces (left - L and right - R, 55 mm 60 mm each) and 
subjects experienced continuous sinusoidal forces of different amplitudes 
(but same wavelength of 10 mm) in the two subspaces (Fig. 1B). Subjects 
were asked to report as quickly and as accurately as possible which of the 
two subspaces had the higher texture amplitude. They placed their right 
index finger on the plate of the Pantograph, which was hidden behind a 
black curtain, and were allowed to move it freely in the Pantograph 
workspace to explore the textures of both subspaces before reporting 
their choice by pressing one of two buttons on a keyboard (left arrow for 
L, right arrow for R). During the experiment, the curtain blocked the 
subjects' view to their fingers, the subjects had no other visual input and 
were instructed to fixate on the keyboard they used to report their 
choices. 

On each trial, subjects compared between the reference amplitude 1 
(presented either on the left or right subspace) and one of six other 
amplitude levels (0.5, 0.75, 0.9, 1.1, 1.25, 1.5). Each subject performed 
20 trials for each amplitude level, resulting in 20 trials x 6 ampli-
tudes ¼ 120 trials in total. The full experiment was split into 3 blocks of 
40 trials. One subject showed poor behavioral performance (accuracy 
was not significantly different from chance level) and another subject's 
EEG recordings were significantly contaminated with eye movement 
artifacts, thus data from these two subjects were removed from any 
subsequent analyses. We report results from the remaining 13 subjects. 

Control experiment 

We recruited ten healthy right-handed subjects (4 females, aged 
24 2 years) that were naïve to the experimental setup and the tactile 
discrimination experiment described above, and asked them to partici-
pate in a second experiment. The subjects were asked to actively explore 
the virtual surface generated by the Pantograph using their right index 
finger. During the experiment, the participants experienced the same 
tactile stimulation as for the tactile discrimination task, i.e. continuous 
sinusoidal forces of different amplitudes in the two subspaces, but, in 
contrast to the first experiment, they did not have to make any perceptual 
choice. Hence, this control experiment served to compare the EEG and 
kinematic signals between a decision-making and a non-decision-making 
haptic task. It therefore allowed us to individuate the components of 
neural activity and active sensing that can be solely attributed to 
decision-making behavior. 

Data recording and pre-processing 

Movement kinematics (x, y coordinates of finger position) and 
applied forces were measured at a sampling frequency of 1000 Hz. 
Single-trial movement velocity waveforms were computed using the 
derivatives of the recorded position. During performance of the task, we 
also recorded EEG signals at 2048 sampling frequency using a Biosemi 
EEG system (ActiveTwo AD-box, 64 Ag-AgCl active electrodes, 10-10 
montage). EEG recordings were preprocessed using EEGLab (Delorme 
and Makeig, 2004) as follows. EEG signals were first down-sampled to 
1000 Hz to match movement kinematics and dynamics. Then, they were 
bandpass filtered to 1–50 Hz using a Hamming windowed FIR filter. To 
isolate the purely neural component of the EEG data, we used the 
following procedure: we first reduced the dimensionality of the EEG data 
by reconstituting the data using only the top 32 principal components 
derived from Principal Component Analysis (PCA). Thereafter, an Inde-
pendent Component Analysis (ICA) decomposition of the data was per-
formed using the Infomax algorithm (Bell and Sejnowski, 1995). We then 
used an ICA-based artifact removal algorithm called MARA (Winkler 
et al., 2011) to remove ICs attributed to blinks, horizontal eye move-
ments (HEOG), muscular activity (EMG), and any loose or highly noisy 
electrodes. MARA assigned each IC a probability of being an artifact; we 
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EEG2Behavior analysis 

To identify correlations between the EEG recordings and the subjects' 
active sensory experience, we used a novel methodology, termed 
EEG2Beh(avior). EEG2Beh extends the previously developed framework 
Stim2EEG (Dmochowski et al., 2017) to make it applicable to simulta-
neously recorded neural activity and sensorimotor behavioral signals 
(see Fig. 2 for a graphical illustration of the procedure). In the following, 
we used finger velocity as the kinematic feature representing active 
sensing behavior, but we also note that using finger position yielded 
qualitatively very similar results. 

The method is based on the temporal filtering of the velocity signals 
s(t) and the spatial integration of EEG signals miðtÞ recorded from i 
electrodes (Fig. 2): 

X 
uðtÞ ¼ hðtÞ*sðtÞ ; vðtÞ ¼  gimiðtÞ (1) 

i 

where * in the first equation denotes convolution between two signals, 
whereas the second equation is a weighted summation. The temporal 
filter h(t) and spatial filter gi are found by maximizing the correlation 
ρðu; vÞ between the filtered movement velocity u(t) and the filtered EEG 
activity v(t): 

P 
uðtÞvðtÞ

ρðu; vÞ ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P t (2) 
tu2ðtÞv2ðtÞ 

To learn the filters that yield maximally correlated EEG and kinematic 
components, we performed Canonical Correlation Analysis (Hotelling, 
1936; De Cheveigne et al., 2017) (CCA), which provides multiple pairs of 
solutions. Each pair c captures in gci a spatial filter of EEG activity and in 
hcðtÞ a temporal filter of the movement velocity. Here we chose the 
temporal aperture of the temporal filters to be [-1s,1s] (varying the filter 
aperture did not change qualitatively the results). This choice of temporal 
filter window allowed both positive and negative lags between the EEG 
and the velocity signals, which was crucial for investigating the mutual 
causal dependencies between the brain and the behavioral signals. In 
other words, by allowing the EEG signals to both precede and follow the 
velocity signals (within a 1s period), we could identify patterns of brain 
activity that both drive and are driven by the sensorimotor behavior. 

To visualize the spatial distribution of neural activity associated with 
each filter, we computed the EEG components w using the “forward 
model” formalism as follows (Parra et al., 2002, 2005; Haufe et al., 
2014): 

W ¼ RmmGðGTRmmGÞ 1 (3) 

where Rmm is the autocovariance matrix of the EEG data matrix M ¼ ½m1; 
m2; ⋯; mI and G ¼ ½g1; g2; ⋯; gC is a matrix containing the C CCA-
derived spatial filters. The corresponding forward models are the col-
umns of matrix W ¼ ½w1; w2; ⋯; wC . 

Hence this approach extracts C pairs of temporal kinematic compo-
nents and spatial EEG components ðht ; wsÞi that correlate with strength 
ρi in decreasing order ρ1 > ρ2 > … > ρC. 

To determine statistical significance of the correlations at each 
learned component pair (ρk > 0), we randomized the phase spectrum of 
the EEG signals, which disrupted the temporal relationship between the 
EEG activity and the kinematics while preserving the autocorrelation 
structure of the signals (Theiler et al., 1992). We generated 1000 
phase-randomized surrogates of the EEG data and computed EEG2Beh 
correlations with the kinematics to define the null distribution from 
which we estimated p-values. In contrast to a standard shuffling pro-
cedure that disrupts any coordination across EEG sensors, this 
phase-randomization procedure maintains the magnitude spectrum of 
the EEG signals, thus conserving their autocorrelation structure, which is 
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Fig. 2. Schematic view of EEG2Beh(avior) and the identified. Subjects move their fingers to actively sense a surface while their brain activity (e.g. EEG signals) ri(t) is  
recorded. The relevant kinematic features of the sensorimotor behavior (the movement velocity here) are extracted, resulting in a time series s(t). An optimization 
procedure, implemented via canonical correlation analysis, then computes spatial filters w to apply to the neural signals and temporal filters h(t) to apply to the 
velocity such that the resulting filter outputs are maximally correlated in time. The algorithm output is a set of multiple EEG-kinematic components and their coupling 
strengths ρ2 . Three pairs of EEG components (scalp maps of neural activity) and their matching kinematic components (temporal profiles of velocity filters) were found 
to show significant correlations. 
           
         

          
          

 

  

          
         

          
          

         
          

            
           

         
           

           
          

             
   

         
 

           
         

         
         
          
           

           
        

           
             

        
          
          

a fundamental feature of the original signals when the significance of 
cross-correlation is assessed. Hence, using this procedure, the obtained 
surrogates that define the null distribution are a more plausible com-
parison (resulting in a stricter statistical test) than randomly shuffled 
surrogates. 

Source localization 

To identify the brain regions that generated the EEG component ac-
tivations we performed a source reconstruction analysis. We used 
Brainstorm (Tadel et al., 2011), an open-source Matlab package for 
M/EEG signal processing, to translate the obtained forward models into 
distributions of underlying cortical activity. A standardized head model 
based on the average template brain of the Montreal Neurological 
Institute (MNI) was used as single subject MRI data were not available. 
To estimate the sources, we used the whitened and depth-weighted linear 
L2-minimum norm estimates algorithm with no noise modelling (noise 
covariance equal to the identity matrix) and estimated amplitude SNR of 
the recordings equal to 3 (default - used to compute the regularization 
parameter). We constrained the orientation of the source model by 
modelling at each grid point only one dipole that is oriented normally to 
the cortical surface. 

Hierarchical drift diffusion modelling of performance data with EEG2Beh 
regressors 

We fit the subjects' performance, i.e. accuracy and response time (RT), 
with a hierarchical drift diffusion model (HDDM) (Wabersich and Van-
dekerckhove, 2014) which assumes a stochastic accumulation of sensory 
evidence over time, toward one of two decision boundaries corre-
sponding to correct and incorrect choices (Ratcliff, 2002; Ratcliff and 
McKoon, 2008; Ratcliff et al., 2015, 2016). The model returns estimates 
of internal components of processing such as the rate of evidence accu-
mulation (drift rate), the distance between decision boundaries control-
ling the amount of evidence required for a decision (decision boundary), 
a possible bias towards one of the two choices (starting point) and the 
duration of non-decision processes (non-decision time), which include 
stimulus encoding and response production. As per common practice, we 
assumed that stimulus differences affected the drift rate (Ratcliff and 
 15 
  
          

          
           

          
             

         
           

         
         

        
        

           
           

           
           

          
              
             

          
        

          
        

          
             

         
       

         
         

            
         

             
            

          
            

             
            

         
         

Frank, 2012). 
In short, the model iteratively adjusts the above parameters to 

maximize the summed log likelihood of the predicted mean response 
time (RT) and accuracy. The DDM parameters were estimated in a hi-
erarchical Bayesian framework, in which prior distributions of the model 
parameters were updated on the basis of the likelihood of the data given 
the model, to yield posterior distributions (Kruschke, 2010b; Wiecki 
et al., 2013; Wabersich and Vandekerckhove, 2014). The use of Bayesian 
analysis, and specifically the hierarchical drift diffusion model has 
several benefits relative to traditional DDM analysis. First, posterior 
distributions directly convey the uncertainty associated with parameter 
estimates (Gelman, 2003; Kruschke, 2010a). Second, the Bayesian hier-
archical framework has been shown to be especially effective when the 
number of observations is low (Ratcliff and Childers, 2015). Third and 
more importantly, this framework supports the use of other variables as 
regressors of the model parameters to assess relations of the model pa-
rameters with other physiological or behavioral data (Cavanagh et al., 
2011, 2014; Frank et al., 2015; Nunez et al., 2015, 2017; Turner et al., 
2015; Pedersen et al., 2016). This property of the HDDM allowed us to 
establish the link between the results of the brain-behavior coupling 
analysis and the decision parameters of the model. 

To implement the hierarchical DDM, we used the JAGS Wiener 
module (Wabersich and Vandekerckhove, 2014) in JAGS (Plummer, 
2003), via the Matjags interface in Matlab to estimate posterior distri-
butions. For each trial, the likelihood of accuracy and RT was assessed by 
providing the Wiener first-passage time (WFPT) distribution with the 
four model parameters (boundary separation, starting point, 
non-decision time, and drift rate). Parameters were drawn from uni-
formly distributed priors and were estimated with non-informative mean 
and standard deviation group priors. The starting point was set as the 
midpoint between the two decision boundaries as the experimental 
design induced no bias towards one of the two choices (Philiastides et al., 
2011). There were 5500 samples drawn from the posterior; the first 500 
were discarded (as “burn-in”) and the rest were subsampled (“thinned”) 
by a factor of 50 following the conventional approach to MCMC sampling 
whereby initial samples are likely to be unreliable due to the selection of 
a random starting point and neighboring samples are likely to be highly 
correlated (Wiecki et al., 2013; Wabersich and Vandekerckhove, 2014). 
The remaining samples constituted the probability distributions of each 
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estimated parameter. 
As part of the model fitting within the HDDM framework, we used the 

single-trial EEG2Beh correlations of the identified components as re-
gressors of the decision parameters (non-decision time, τ and drift rate, δ) 
as follows: 

τ ¼ β0 β1 *ρ
2 β2 *ρ

2 β3 *ρ
2 (4)1 2 3 

2 2 2δ ¼ γ0 γ1 *ρ1 γ2 *ρ2 γ3 *ρ3 (5) 

In these regressions, ρ2 
i are the squared single-trial EEG2Beh corre-

lations of the three components respectively. The coefficients βi (γi) 
weight the slope of the non-decision time (drift rate) by the values of ρ2 

i 

on that specific trial, with an intercept β0 (γ0). By using these eight 
regression coefficients we were able to test the influences of each of the 
three identified components on either of the model parameters (Cav-
anagh et al., 2014). Posterior probability densities of each regression 
coefficient were estimated using the sampling procedure described above 
and were graphically represented as violin plots (see Fig. 4B–C for ex-
amples). Significantly positive (negative) effects were determined when 
>99% of the posterior density was higher (lower) than 0. 

For comparison with alternate models, we used the Deviance Infor-
mation Criterion (DIC), a measure widely used for fit assessment and 
comparison of hierarchical models (Spiegelhalter et al., 2002). DIC se-
lects the model that achieves the best trade-off between goodness-of-fit 
and model complexity. Lower DIC values favor models with the highest 
likelihood and least degrees of freedom. 

A detailed account of the analysis pipeline implemented in this study 
is given graphically in the form of a flowchart in Fig. 3. 

Results 

Tactile discrimination performance 

To generate tactile stimulation that can be actively sensed, we 
employed a haptic stimulator (Campion et al., 2005; Frissen et al., 2012) 
(Fig. 1A) and programmed it to render a virtual grating texture with 
different amplitudes (Fig. 1B). In particular, we split the workspace of the 
haptic stimulator into two regions (left - L and right - R) and asked fifteen 
subjects to actively explore the virtual surface and report as quickly and 
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as accurately as possible which of the two subspaces had higher texture 
amplitude. One of the two regions (termed reference) had a fixed virtual 
amplitude while the other subspace (termed comparison) had a varying 
amplitude for each trial. On each trial, subjects actively moved their 
finger to scan the two regions in order to compare a reference texture 
amplitude (which was randomly presented in one of the two regions) and 
a comparison texture with higher or lower amplitude (six amplitude 
differences: 0.5, 0.25, 0.1, 0.1, 0.25.0.5) (Fig. 1C). We found that 
task performance improved significantly with increasing stimulus dif-
ference, as reflected by a larger fraction of correct choices (p < 10 7, F (2, 
36) ¼ 27.03) and faster RTs (p < 0.05, F (2, 36) ¼ 4.04) (Fig. 1D,F). 

Active sensing behavioral kinematics 

During this active tactile decision-making task, we also recorded a) 
the subjects' finger position, offering a detailed account of their active 
sensing strategy and b) their EEG activity reflecting the neural dynamics 
that underlie performance of this task. First, we examined what aspects of 
the active sensing strategy used by the subjects were affected by task 
difficulty. We found that subjects switched between the two textures (in 
order to compare their amplitudes before reaching a decision) more 
times when the task was harder, but this dependence of the number of 
crossings on stimulus differences was not significant at the population 
level (p ¼ 0.17, F (2,36) ¼ 1.87, Fig. 1E). Interestingly, the time-averaged 
speed with which the subjects scanned the textures was independent of 
the stimulus difference (Fig. 1G). However, instantaneous finger velocity 
varied considerably within each trial suggesting that subjects modulated 
their tactile exploration speed in order to actively sense the two surfaces 
before making a choice (Fig. 1H). 

EEG activity 

After characterizing the subjects' active sensing behavior, we aimed 
to investigate the structure of their whole-brain activity during perfor-
mance of this task. We thus applied Principal Component Analysis (PCA) 
to the EEG recordings pooled across all participants to extract the main 
dimensions of EEG variation and then performed source localization 
analysis to the first three PCs to identify the neuronal origins of these 
brain activations. We found that the most prominent EEG components 
localized to premotor, motor and supplementary motor areas (first PC, 
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Fig. 3. Illustration of the analysis framework imple-
mented in this study. To characterize active tactile 
decision-making, three types of measurements are 
simultaneously made: a) EEG recordings, b) sensori-
motor signals (movement kinematics), and c) task 
performance measures (accuracy and response time -
RT). EEG and kinematic signals are input to the 
EEG2Beh algorithm that outputs pairs of brain – 
behavior coupling components (scalp maps and tem-
poral kinematic filters) and their correlation measures 
ρ2 . The brain (EEG) components are input to a source 
localization algorithm to identify their neuronal ori-
gins. The EEG2Beh coupling strengths ρ2 inform the 
hierarchical drift diffusion modelling (HDDM) of the 
task performance data. HDDM uses the ρ2 to translate 
accuracy and RT into the components of decision-
making processing (such as evidence accumulation 
or stimulus encoding) thereby characterizing the 
functional role of each EEG2Beh component. 
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Fig. 1I), and right-lateralized somatosensory as well as other parietal 
areas (second and third PC, Fig. 1J-K). 
       

       
            
          

          
           

           
           

          
         

        
         

         
        

        
              
            

           
          

        
          

            
     

         
          

           
           

        
          

          
            

            
           

           
          

          
             

            
             

            
           

  
        

       
           

         
          

          
         

Three distinct brain to active sensing couplings 

Following the aforementioned general characterization of EEG ac-
tivity in this task, we then probed the relationship between the subjects' 
brain activity and their active sensory experience. We hypothesized that 
the subjects' active sensing strategy is represented by their finger kine-
matics and in particular their movement velocity which they varied in 
order to actively explore the two surfaces. To relate movement velocity 
with the recorded EEG signals, we capitalized on a novel computational 
approach, termed “Stim2EEG” (Dmochowski et al., 2017), for the fusion 
of neuroimaging and dynamic stimulus signals. We extended the appli-
cability of this approach to sensorimotor behavioral measurements (ki-
nematic signals here) and termed this analytical method as 
“EEG2Beh(avior)”. EEG2Beh aims to identify components of brain – 
sensorimotor behavior coupling using an optimization procedure based 
on Canonical Correlation Analysis (CCA) (Hotelling, 1936). Specifically, 
EEG2Beh selects a spatial filter w to apply to the EEG signals and a 
temporal filter h to apply to the kinematic feature (i.e. velocity) time 
series such that the resulting filter outputs are maximally correlated in 
time (Fig. 2). Ultimately, this approach outputs multiple spatial EEG 
components matched with multiple temporal kinematic components as 
well as the coefficient of determination (square of the correlation coef-
ficient) of the filter outputs ρ2, a measure of the brain-behavior coupling 
for each pair of components. 

To identify EEG2Beh components that describe performance of this 
task consistently across subjects, we pooled the pre-processed EEG and 
velocity data across all subjects and applied them to the EEG2Beh algo-
rithm. The algorithm extracted three pairs of distinct EEG (spatial) and 
kinematic (temporal) components (Fig. 2) showing significant EEG2Beh 
coupling (p < 0.05, corrected for multiple comparisons using Bonferroni 
correction). Source localization of the first EEG component revealed a 
neuronal origin in the right lateral occipital complex (LOC) (Fig. 4A). The 
brain source of the second EEG component was localized to the right 
middle frontal gyrus (MFG) (Fig. 4B), whereas the third component had 
its origin in the supplementary motor area (SMA) and premotor cortex 
(Fig. 4C). Interestingly, the first two components with the highest brain-
behavior couplings did not correspond to the EEG components that 
accounted for the highest variance in the data (see sources of the three 
first PCs in Fig. 1I). This finding suggests that the components carrying 
most of the power in the EEG recordings did not correlate with active 
sensing; instead brain areas with lower activity (less than 10% of the 
variance of the EEG data) were more strongly coupled with the move-
ment kinematics. 

To evaluate whether the three extracted EEG2Beh components 
characterized the EEG-kinematics relationship for each individual sub-
ject, we filtered the single-subject EEG and velocity signals with the 
identified spatial and temporal filters respectively and computed the 
EEG2Beh correlations ρ2 of each subject. To test for statistical signifi-
cance of the single-subject correlations, we performed a permutation test 
using phase-randomized EEG data (see Materials and Methods for de-
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Fig. 4. Brain sources of the three EEG components
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tails). First, the phase-spectrum of the EEG time series of each subject was 
randomized and then the resulting surrogate EEG data were filtered by 
the spatial filters before computing the correlations with the temporally 
filtered velocity signals. Using this test (repeated 1000 times), we found 
that EEG2Beh couplings were significant (p < 0.05, corrected for multiple 
comparisons using Bonferroni correction) for all but three subjects for 
each component (different subjects for each component, so each subject 
had at least two of the three components), which suggests that the 
identified components were present in the majority of the subjects. 
     

          
            
        

        
          

          
          

          
           

           
         

           
          
         

            
          

         
 

            
         

           
           

           
       
         

  
            

         
              

          
             

        
         

         
         

         
            

 
          

          
         

Brain-behavior correlations predict HDDM parameters 

Having specified the main components of brain activity and active 
sensing behavior that describe this task, we then aimed to establish the 
missing link between this brain-behavior coupling and decision-making 
performance. We asked whether trial-to-trial fluctuations in the brain-
behavior coupling have a direct influence on behavior and, in partic-
ular, which decision-making processes they may be implicated in. To 
address this question, we first quantified the brain-behavior coupling in 
single trials, i.e. computed single-trial ρ2 values by filtering the single-
trial EEG and kinematic data with the identified spatial and temporal 
filters respectively. Then, we integrated the single-trial ρ2 values into a 
hierarchical drift diffusion model (HDDM) (Ratcliff and McKoon, 2008; 
Wiecki et al., 2013), a cognitive model of decision-making behavior that 
decomposes task performance, i.e. accuracy and RT, into the internal 
components of processing representing the rate of sensory information 
integration (drift rate, δ), the amount of evidence required to make a 
choice (decision boundary separation, α), and the duration of other 
processes (non-decision time, τ), i.e. stimulus encoding and response 
production. 

As part of the fitting of the HDDM model, we estimated regression 
coefficients (β, ) to determine the relationship between trial-to-trial 
variations in ρ2 and the main decision parameters. Our hypothesis was 
that that the strength of the brain-behavior couplings pertains to decision 
formation. Hence, this approach served to assess whether any of the 
HDDM parameters representing distinct decision formation components 
showed any relation to the identified brain-behavior correlations on 
single trials. 

Our results revealed that the task performance data were fit well by 
the HDDM with trial-dependent drift rate, non-decision time and deci-
sion boundary separation (R2 ¼ 0.81, see Fig. 5A for the model fits of the 
behavioral accuracies and RTs). This finding indicates that the HDDM 
model can explain behavior during such a task that, in contrast to most 
speeded decision-making tasks, includes active sampling and exploration 
of both alternatives and consequently longer response times. In partic-
ular, we found considerably longer non-decision times (1.71s 0.01s) 
than those typically found during rapid perceptual decisions (0.3s-0.4s), 
which suggests that these longer non-decision time durations likely 
capture the extra time needed to sense both stimuli and switch between 
them. 

More importantly, the HDDM model with EEG2Beh regressors of the 
non-decision times and drift rates, provided a better trade-off between 
goodness-of-fit and complexity (as assessed by the Deviance Information 
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Fig. 5. HDDM fitting and model comparisons. А. Choice proportions and RT distributions are captured by EEG2Beh-informed HDDM. Behavioral RT distributions (in 
green) are shown for each stimulus difference together with posterior predictive simulations from the HDDM (in blue). Negative values in the time axis correspond to 
incorrect choices and positive values represent correct choices. Higher histogram values in the positive time axis indicate higher proportion of correct choices. Fitting 
accuracy is worse with lower stimulus differences. B. Comparison with alternate models. We compared the HDDM model of choice with alternative HDDM models 
using the Deviance Information Criterion (DIC). We tested HDDM models where either the drift rate (δ) or the non-decision time (τ) or both were not dependent on the 
EEG2Beh correlations and a model where the decision boundary (α) was dependent on the EEG2Beh correlations. Positive difference DIC values (DICmodel – 
DICoptimal) for all four models indicate that the model of choice achieved a better trade-off between goodness-of-fit and number of free parameters. 
          
          

              
             

          
                

         
        

        
            

         
          

Criterion - DIC for model selection (Spiegelhalter et al., 2002)) compared 
to alternative HDDM models (see Fig. 5В for DIC comparisons). Specif-
ically, the model of choice (shown in Fig. 6A) provided a better fitting of 
the task performance data than a) a model that did not include EEG2Beh 
regressors, b) models that included regressors of the non-decision times 
only or the drift rates only, or c) a model that included a regressor of the 
decision boundary separation. Thus, we deduced that using the 
brain-behavior couplings as predictors of single-trial non-decision times 
and drift rates yielded better HDDM model performance. 

Central to our study, we then examined whether any of the EEG2Beh 
regressors were significantly predictive of the HDDM model parameters. 
We found that the brain-behavior correlations of the first (occipital) 
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Fig. 6. Formulation of best HDDM model and regression results. A. Graphical mo
EEG2Beh regressors. Round nodes represent continuous random variables and doub
variables. Shaded nodes represent recorded or computed signals, including single-tr
nodes represent unobserved latent parameters. Parameters are modelled as random
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boundary separation an,d shares the same parents μα and σα 2 that define the distributio
and drift rate δ are determined by EEG2Beh couplings with regression coefficients β
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Violin plots showing the distribution of the regression coefficients γi (100 samples d
components for the prediction of single-trial drift rates δ. 
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component were significantly negatively correlated to the non-decision 
times (β1 < 0 with p < 0.01, i.e. the stronger the coupling the shorter 
the non-decision times, Fig. 6B) and the correlations of the second 
(prefrontal) component were predictive of the drift rate ( 2 > 0 with 
p < 0.01, i.e. higher drift rates for stronger couplings, Fig. 6C). Interest-
ingly, the estimated effects ( 2) of the ρ2 of the second component on drift 
rate were not significantly different for the three difficulty levels (Fig. 5C) 
indicating that this relationship is not modulated by the amount of sen-
sory evidence. In contrast, the constant term ( 0) showed a significant 
increase (p < 0.001) with the amount of sensory evidence. Taken 
together, these results suggest that the drift rate was proportional to the 
amount of sensory evidence and its trial-to-trial fluctuations were 
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modulated by the brain-behavior couplings over prefrontal areas. Finally, 
the third component showed similar relations to the HDDM parameters 
as the ones described above (negative for the non-decision times and 
positive for the drift rates) but none of the two were significant 
(p > 0.05). 

No MFG activation when performing active sensing but not decision-making 

To validate the functional roles of the identified components as 
revealed by the HDDM analysis, we also applied the EEG2Beh analysis to 
EEG and kinematic signals recorded while naïve subjects actively inter-
rogated the same stimuli but did not have to make a perceptual choice. 
The obtained neural components localized to SMA (first and third 
component) and LOC (all three components, see Fig. 7). The presence of 
these activations in such a non-decision-making task corroborates their 
involvement in active sensing behavior. In particular, these results are 
consistent with the identified implication of LOC in the formation of 
tactile stimulus representations, i.e. a sensory/stimulus-encoding role, 
and a neither sensory nor decision (but likely a motor) related role for 
SMA. Importantly, no MFG activation was found in this control experi-
ment which indicates that this component is present only when a 
perceptual choice is made and reflects a decision-related signal. 

Discussion 

In this study, we probed the components of brain activity and 
sensorimotor behavior involved in active perceptual decisions and 
showed that the sensorimotor strategy employed for active sensing drives 
the perceptual and cognitive processes leading to decision formation. In 
particular, the quality of tactile stimulus encoding and evidence accu-
mulation pertains to the coupling between the kinematic patterns of the 
subject's motion and the neural activity that drives (and is driven by) this 
motion. The significance of our approach and the implications of the 
findings are discussed in the following. 

Active sensing as a window onto the neural processes of decision-making 

There has been significant progress in the study of the neural pro-
cesses of perceptual decision-making (Heekeren et al., 2008; Donner 
et al., 2009; Rushworth et al., 2009; O'Connell et al., 2012; Wyart et al., 
2012; Lou et al., 2014; Hanks and Summerfield, 2017). However, in most 
decision-making research, sensory information sampling, processing, and 
integrating takes place passively, whereas in real-world settings most 
perceptual decisions are made during active behaviors (e.g eye move-
ments to gather information about a visual stimulus (Najemnik and 
Geisler, 2005; Kleinfeld et al., 2006; Renninger et al., 2007; Najemnik 
and Geisler, 2008; Navalpakkam et al., 2010; Chukoskie et al., 2013; 
Toscani et al., 2013) or hand/finger movements to explore a tactile 
surface (Lederman and Klatzky, 1986, 1987; Oddo et al., 2017; Rongala 
et al., 2017)). This process entails the integration of information from 
multiple locations in order to both select the next movement and solve 
the task (Hayhoe and Ballard, 2005; Rothkopf et al., 2007; Schroeder 
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Fig. 7. Brain sources of the three significant EEG2Beh components extracted from th
stimuli but did not make any perceptual choice. 
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et al., 2010; Chukoskie et al., 2013; Morillon et al., 2015; Schroeder and 
Ritt, 2016; Yang et al., 2016a, 2016b). Here we investigated this senso-
rimotor coupling in a decision making task using a novel approach which 
decodes a pattern of neural activity that encodes a pattern of the move-
ment kinematics (Dmochowski et al., 2017). The development of similar 
approaches relating neural activity to continuous stimulus or behavioral 
variables has been a topic of major recent interest (Crosse et al., 2016; De 
Cheveigne et al., 2017; Ince et al., 2017; Oddo et al., 2017). 

A distributed neural network for active perceptual decision-making 

Here, we found that movement kinematics are encoded in different 
brain regions and the respective brain-behavior coupling was predictive 
of dissociable decision-making processes. 

First, the coupling of right occipital cortical activity with the move-
ment kinematics was shown to modulate the non-decision time duration 
of the decision formation procedure. This parameter includes the dura-
tions of a) the stimulus encoding and b) the motor response to indicate 
the choice made. From these two processes, the latter is not expected to 
vary significantly from trial to trial in this experimental paradigm and 
furthermore, motor actions are not localized in occipital areas. Hence, we 
deduce that the correlation of the first pair of EEG2Beh components is 
likely associated with the stimulus encoding process. We further discuss 
the role of visual cortex in tactile decision-making in the next section. 

Second, we found that the component localizing to prefrontal cortex 
was predictive of the rate of evidence accumulation towards a tactile 
decision, which is also compatible with previous work. The prefrontal 
cortex has been shown to play an important role in decision-making and, 
in particular, it has been implicated in perceptual (but also economic) 
information integration (Heekeren et al., 2006; Philiastides et al., 2011; 
Rahnev et al., 2016; Sterzer, 2016). We should note that, in this study, 
the contribution of prefrontal cortex to evidence accumulation may be 
direct, i.e. by representing a decision variable, or indirect, i.e. by playing 
a role in regulating other cognitive processes such as task engagement, 
attention or arousal that impact on the rate at which evidence is accu-
mulated. Also, our findings do not rule out the possibility that other brain 
areas – not directly related to active sensing - may contribute to regu-
lating evidence accumulation in this task. 

We also identified a third component localizing to the supplementary 
motor area that showed significant EEG-kinematics coupling but did not 
correlate with any DDM model parameter. SMA participates in producing 
motor behavior and has been previously demonstrated to be involved in 
tactile decision-making (Pleger et al., 2006) and, in particular, to corre-
late with perceptual sensitivity to tactile roughness (Kim et al., 2015). 
SMA has also been implicated in the calculation of motor plans during 
continuous movements (Pereira et al., 2017). We thus aim to further 
elucidate the role of SMA in active tactile decisions in future work 
involving simultaneous EEG and fMRI recordings. 

Taken together, our results suggest that active perceptual decision-
making is based on the interaction of different neural networks, which 
have complementary roles in decision formation (Philiastides et al., 
2006; Philiastides and Sajda, 2007; Ploran et al., 2007; Heekeren et al., 
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2008; Mostert et al., 2015; Delis et al., 2016). 

Deciphering the role of visual cortex in tactile decision-making 

Our findings are consistent with prior work associating the lateral 
occipital cortex with tactile processing (Sathian, 2005, 2016; Zhang 
et al., 2005; Stilla et al., 2008; Lucan et al., 2010) and assigning a 
multimodal role to the visual cortex (Lacey et al., 2007; Stilla and 
Sathian, 2008; Lacey and Sathian, 2011, 2012; 2014, 2015; Murray, 
2016; Murray et al., 2016). Importantly, Zangaladze and collaborators 
demonstrated the causal involvement of occipital cortex in tactile 
discrimination performance (Zangaladze et al., 1999). Here we investi-
gated further its role in tactile behaviors in which decision times are 
under subjects' control and showed that occipital cortex contributes to 
the transmission of information from the sensory organs to the evidence 
accumulation process. In contrast to current belief that visual cortex 
represents the features of tactile stimuli that lead to a “tactile object” 
(tactile features provide explicit information about shape, orientation 
etc.) rather than fine grain tactile textures (as in our experiment) (Zan-
galadze et al., 1999), our data showed that the representation of the fine 
tactile textures indeed localized to visual cortex. 

So why do we see visual cortex in a fine grain tactile discrimination 
task? We believe that the difference is due to active sensing. Previous 
work referenced above used very controlled, short trial-based paradigms 
where subjects were presented with stimuli without a need to actively 
sense. What is unique to our work is that the process of active sensing 
likely results in subjects dynamically forming a representation of the 
tactile surface into an object. For example, as they move their finger, 
exploring the fine texture enables them to integrate information so that 
they can represent spatial locations of the textural boundaries and the 
spatial extent of the textures themselves. Though subjects do not need to 
report those object-related properties here, having a representation of 
such properties enables them to potentially make more efficient decisions 
— e.g. using a representation of the tactile boundary to guide rapid 
comparisons of textural differences. 

Though additional experiments are needed to investigate the inter-
action of the representation and the task objective (textural decision vs. 
object-level decision), our current work provides evidence that active 
sensing itself allows the brain to take simple stimuli and tasks and build 
more complex representations that would be of greater utility than just 
solving the simple task at hand. 

Informed cognitive modelling to uncover latent neural processes 

An important contribution of our study is the dissociation of the roles 
of the identified neural/kinematic patterns. This was only made possible 
by the joint cognitive modelling of behavioral and neural/kinematic data 
that linked the neural correlates of sensori-motor behavior with the 
cognitive processes involved in decision-making. Similar model-based 
cognitive neuroscience approaches have been proposed recently and 
have been shown to be effective in characterizing the neural un-
derpinnings of behavioral components (Turner et al., 2015, 2017). By 
means of this approach, neural and other physiological measures of 
various cognitive processes have been identified (Ratcliff et al., 2009; 
Cavanagh et al., 2011, 2014; Ratcliff and Frank, 2012; Dmochowski and 
Norcia, 2015; Frank et al., 2015; Nunez et al., 2017). Here we asked 
whether the neural representations of active sensing are used to generate 
decision-making behavior and in particular if their trial-to-trial fluctua-
tions affect decision-making performance. We found that the trial-to-trial 
variability of the brain-behavior coupling in a) occipital and b) prefrontal 
cortices – indexes the efficiency of a) stimulus encoding and b) integra-
tion of perceptual information respectively. 

Overall, this study indicates that active sensing provides a window 
into understanding the patterns of brain activity and sensorimotor 
behavior that drive perceptual decision-making and offers the first direct 
evidence on the neural networks underlying active tactile decisions. In 
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particular, we demonstrate that, during active tactile sensing, the right 
occipital (presumably “visual”) cortex has a central role in forming tactile 
stimulus representations whereas the middle frontal gyrus contributes to 
regulating how quickly perceptual evidence accumulates towards a 
choice. 
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