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Abstract
Objective. Reorienting is central to how humans direct attention to different stimuli in their
environment. Previous studies typically employ well-controlled paradigms with limited eye and
head movements to study the neural and physiological processes underlying attention reorienting.
Here, we aim to better understand the relationship between gaze and attention reorienting using a
naturalistic virtual reality (VR)-based target detection paradigm. Approach. Subjects were
navigated through a city and instructed to count the number of targets that appeared on the street.
Subjects performed the task in a fixed condition with no head movement and in a free condition
where head movements were allowed. Electroencephalography (EEG), gaze and pupil data were
collected. To investigate how neural and physiological reorienting signals are distributed across
different gaze events, we used hierarchical discriminant component analysis (HDCA) to identify
EEG and pupil-based discriminating components. Mixed-effects general linear models (GLM)
were used to determine the correlation between these discriminating components and the different
gaze events time. HDCA was also used to combine EEG, pupil and dwell time signals to classify
reorienting events.Main results. In both EEG and pupil, dwell time contributes most significantly
to the reorienting signals. However, when dwell times were orthogonalized against other gaze
events, the distributions of the reorienting signals were different across the two modalities, with
EEG reorienting signals leading that of the pupil reorienting signals. We also found that the hybrid
classifier that integrates EEG, pupil and dwell time features detects the reorienting signals in both
the fixed (AUC= 0.79) and the free (AUC= 0.77) condition. Significance.We show that the neural
and ocular reorienting signals are distributed differently across gaze events when a subject is
immersed in VR, but nevertheless can be captured and integrated to classify target vs. distractor
objects to which the human subject orients.

1. Introduction

As humans, we constantly redirect our attention
to different objects and stimuli in the environ-
ment. The complex set of neural and physiolo-
gical adjustments we make is known as the reori-
enting response. The process underlying attention
reorienting (e.g. the reorienting response) has been
widely studied both in the fields of neuroscience and

psychology [1–3]. Previous studies have identified
neural and physiological signatures of attention reori-
enting, including pupil dilation and the P300 wave
recorded via electroencephalography (EEG) [2, 4, 5].
These neural and physiological signatures are parts
of the larger attention networks in the brain, namely
the dorsal and ventral attention networks, which have
also been functionally linked to the locus coeruleus-
norepinephrine (LC-NE) system [1, 6, 7]. While
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the relationship between the P300 signal and pupil
dilation remains unclear, both of them have been
shown to potentially reflect the phasic activity of the
LC nucleus, with the P300 reflecting the cortical sig-
natures of attention reorienting and pupil dilation
serving as an index of the subcortical LC-NE system
activity [1, 8, 9]. Utilizing these neural and physiolo-
gical signatures, recent neural engineering studies
have developed brain computer interfaces (BCIs) that
can perform simple tasks based on the user’s attention
reorienting response, such as a P300-based speller and
computer cursor control [10, 11].

One of the major limitations of prior attention
reorienting studies is the unnaturalistic environment
in which the subjects performed tasks. These stud-
ies typically employed different variations of a cue-
ing or an oddball task presented on a 2D screen
to generate the reorienting response [12–14]. While
these tasks are simple, well-documented and well-
controlled, they do not represent how humans actu-
ally reorient their attention in the real world. Take a
simple example of a person driving a vehicle down the
street. The drivermust constantly reorient their atten-
tion to different objects and events in the environ-
ment as the vehiclemoves forward. These objectsmay
be task relevant such as a pedestrian crossing the street
or task irrelevant such as an on-ramp sign. At the
same time, the real-world field of view is much wider
than that of a screen, requiring the person to not only
move their eyes but also their head to constantlymon-
itor the surrounding environment. To better under-
stand the neural and physiological basis of attention
reorienting in real-world scenarios, a more natural-
istic experimental paradigm is needed. This under-
standing would potentially translate to more robust
and reliable attention-based BCI systems that are not
confined to a 2D screen and instead enable more nat-
ural eye and head movements.

In this study, we employ an immersive 3D-based
target detection paradigm presented in a head-
mounted virtual reality (VR) display to study atten-
tion reorienting signals in a naturalistic and dynamic
setting. Subjects travel through a simulated city envir-
onment in a moving vehicle with blank white bill-
boards located in between buildings on the left- and
right-hand side of the street. They are instructed to
count the number of target images that appear on
the billboards during each experimental run. Sub-
jects perform the target detection task under two con-
ditions, one without head movement as a control
condition and one with head movement as a more
naturalistic condition. We simultaneously collect the
subjects’ EEG, pupil diameter, gaze position and
head rotation data. Our aims are twofold. First, we
aim to better understand the relationship between
eye movements and the reorienting response. In
previous reorienting studies, the traditional experi-
mental paradigm typically only allows for minimal
or well-controlled eye movements. However, in more

naturalistic conditions such as the one in the cur-
rent study, eye and head movements of the sub-
jects are now coupled to the reorienting process.
This effectively decomposes the reorienting process
across these movements. Therefore, we aim to invest-
igate how the neural and ocular reorienting signals
are reflected in this decomposition. To achieve this
goal, we first employ temporal-based EEG-only and
pupil diameter-only classifiers to identify the neural
and ocular reorienting signatures that differenti-
ate between target and distractor stimuli responses.
We then perform general linear model (GLM) ana-
lysis to determine the correlation between the length
of different gaze events and the reorienting sig-
natures derived from the classifiers. We show that
while the dwell time contributes the most to the
reorienting response, the distributions are different
between the two modalities, with the EEG reorient-
ing response leading that of the pupil reorienting
response. Second, we aim to capture and integrate the
neural and physiological response underlying atten-
tion reorienting in a naturalistic environment. We
employ a hierarchical hybrid classifier combining
EEG, pupil diameter and dwell time to classify the
object in which the subject observes during each trial.
We show that the hybrid classifier successfully cap-
tures neural and ocular reorienting signals and can
classify the target object with relatively high accuracy
even when the subject moves their head in a natural-
istic environment.

2. Methods

2.1. Subjects
Twenty healthy volunteer subjects (15 male, 5 female,
aged 18–40 years old) were recruited for this study.
Subjects did not report any neurological illness or
medication and all had normal or corrected to nor-
mal vision. Informed consent was obtained in writing
from all subjects prior to the experiment in accord-
ance with the guidelines and approval of Columbia
University Institutional Review Board. Data from
two subjects (1 male, 1 female) were excluded from
the final analysis due to substantial artifacts in the
EEG signals. Data from the eighteen remaining sub-
jects (14 male, 4 female, aged 18–40 years old) were
included in the final analysis.

2.2. Virtual environment
The 3D virtual target detection paradigm was
developed using the open-source suite Naturalistic
Experimental Design Environment [15] which is
built on the Unity3D game development software
(Unity Technologies, CA). The virtual environment
consists of a street in the middle of a simulated city
environment. Buildings were placed on the left-
and right-hand side of the street, with blank white
billboards placed in between the buildings. Images
chosen from the CalTech101 database [16] appeared
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on the billboards as the subject approached them in
the virtual environment. Four categories of images
were selected—cameras, laptops, grand pianos and
schooners. Each category of images consisted of a
total of 50 images. The image which appeared on
each billboard was chosen at random and with ran-
dom placement to the left or right of the street for
each trial.

2.3. Experimental paradigm
During each experimental run, the subjects were nav-
igated down the street at a constant speed in an
autonomous vehicle. As the subjects approached to
each pair of billboards, one of them would display
an image chosen at random from the four categor-
ies described in the earlier section. Prior to the start
of the experiment, the subjects were informed which
one of the categories of images was a ‘target’ image
and that the rest were ‘distractor’ images. The subjects
were instructed to internally count the number of tar-
get images displayed and to report the final number to
the experimenter at the end of each session.

Each subject performed the task under two
conditions—fixed and free (figure 1(a)). In the fixed
condition, the subjects were instructed to keep their
head still throughout the whole experimental session
while only using their eyes to saccade to the images
displayed on the billboards before returning to center
marked by a grey square in the middle of the street
(figure 1(b)). In the free condition, the subjects were
instructed to turn both their head and their eyes to
observe and categorize the images on the billboards
before returning to center, similarly marked by a
grey square (figure 1(c)). The two conditions were
designed to simulate a control condition (the fixed
condition) where only eye movements were allowed
and amore naturalistic condition (the free condition)
where both eye and head movements were allowed.

A total of 40 images were displayed during each
experimental block and each block lasted approxim-
ately 200 s. Each subject performed four experimental
blocks at a time of a single condition and a total of
16 experimental blocks, eight being the fixed condi-
tion and eight being the free condition. The order in
which the subjects performed each four experimental
blocks were chosen at random. A total of 640 images
were displayed for each subject and approximately
25% were targets. The target category was randomly
selected for each subject.

2.4. Data acquisition
EEG data was collected using a Biosemi ActiveTwo
amplifier (Biosemi, Amsterdam, The Netherlands)
with 64 Ag/AgCl electrodes at a sampling rate of
2048 Hz. The electrodes were placed according to the
international 10–20 system. All electrode impedances
were less than 50 kΩ and common average refer-
ence was used. Eyetracking data was collected using a
built-in Tobii eyetracker (Tobii, Stockholm, Sweden)

within the Tobii Pro headset. The eyetracker was used
to collect eye position and pupil diameter data at a
sampling rate of 120 Hz. A five-point calibration was
performed every time the subject put on the headset
prior to the start of the experiment. Re-calibration
was performed if the calibration did not display an
‘OK’ sign at the end of the calibration session. An
open-source software library known as lab stream-
ing layer (LSL) was used to synchronize all the data
streams together across a local network [17]. All data
acquisition was performed in an electromagnetically
shielded room.

2.5. Data pre-processing
Eye position and pupillometry data were analyzed
usingMATLAB (TheMathworks Inc., MA). Eye posi-
tion data was first epoched from 0 to 3000 ms locking
to image onset (IO). In order to study the relationship
between gaze events and the reorienting signals, we
first divided the continuous gaze data of each trial into
distinct gaze events related to visual attention reori-
enting. For this purpose, we chose to apply piece-wise
linear modeling to divide the continuous eye posi-
tion data into four distinct phases: (1) Peripheral: the
time of fixation on the center of the display before
any gaze movement was made, (2) First saccade (FS):
the duration of FS towards the target or distractor
image, (3) Dwell time: the time of fixation on the tar-
get or distractor image and (4) Return saccade (RS):
the duration of RS towards the center of the display
(figures 1(b) and (c)). The trials that did not fit the
model were discarded (about 15 percent of total num-
ber of trials on average per subject), along with the
corresponding pupillometry and EEG trials.

Traditionally, EEG and pupillometry data are
epoched by time-locking to the time of stimuli onset.
However, as a result of our piece-wise linearmodeling
of the gaze data, we also identified the time in which
the saccades and fixations began and ended for each
trial. This allows us to epoch our EEG and pupillo-
metry data based not only on when the stimuli onset
occurs but also when the saccade towards the image
and when the fixation on the image occur for each
trial. We therefore denote these times as our three dif-
ferent ‘locking conditions’: (1) time of IO, (2) time of
FS and (3) time of first fixation (FF).

Pupillometry data was first processed by remov-
ing any data during intervals in which the pupil
was not detected. Blinks were then removed based
on the speed of change of the pupil diameter. Any
missing data was interpolated using cubic spline
interpolation. Each subject’s pupillometry data was
then downsampled to 20 Hz and standardized for
each experimental run. Pupillometry data was then
epoched from 0 to 3000 ms based on locking con-
dition and baseline-corrected using the mean value
from−200 to−0 ms.

EEG data was pre-processed using EEGLAB tool-
box [18]. The 64 channel EEG data were band-pass
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Figure 1. Experimental design and setup. (a) Screenshots of the experimental paradigm displayed inside the HMD along with
drawings depicting the head and eye movements of the subject in the fixed condition (left) and free condition (right) when the
stimuli appeared in the environment. Black arrow indicates the face-forward direction of the subject’s head whereas the green
arrow indicates the gaze direction. The green dot in the screenshots indicates where the subject’s gaze falls in the virtual
environment and is only visible in the experimenter’s view. The subject only moves their eyes in the fixed condition to see the
stimuli while the subject moves both their eyes and their head in the free condition. (b) The four phase of subject’s gaze
movement during each experimental trial in the fixed condition. An example of a subject’s horizontal gaze movement during a
trial in the fixed condition is plotted and divided into four different phases. Peripheral (PE) refers to the time of fixation on the
center of the display before any gaze movement was made. First saccade (FS) refers to the duration of FS towards the target or
distractor image. Dwell time (DT) refers to the time of fixation on the target or distractor image. Return saccade (RS) refers to the
duration of return saccade towards the center of the display. The screenshots to the right correspond to each of the four phases
depicted. (c) The four phases of subject’s gaze movement during each experimental trial in the free condition. An example of a
subject’s horizontal gaze movement and head rotation during a trial in the free condition is plotted and divided into four phases
similar to those in the fixed condition. The screenshots to the right correspond to each of the four phases depicted. The change in
the background view corresponds to the head rotation of the subject.
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filtered from 0.5 to 50 Hz and downsampled to
256 Hz. Noisy channels were removed using visual
inspection (4 channels removed on average per sub-
ject). Independent component analysis (ICA) was
performed to remove blinks and horizontal eyemove-
ment artifacts. EEG data was then epoched, relative
to locking condition, from 0 to 1000ms and baseline-
corrected using the mean value from−200 to 0 ms.

Principal component analysis was then per-
formed on the remaining EEG data and only the top
20 PCs were retained in order to reduce the num-
ber of feature space and avoid rank deficiency issues
when performing classification. Temporal ICA was
then performed on the data to ensure that the tem-
lporal patterns of the activity were statistically inde-
pendent from each other. The resulting ICs were used
as input for the classifier described in the following
section and results prior to ICA removal are presen-
ted in Supplementary figure 7 (available online at
stacks.iop.org/JNE/18/066052/mmedia).

2.6. Data analysis
2.6.1. Hierarchical discriminant component analysis
(HDCA)
In order to capture and integrate the neural and ocu-
lar reorienting response recorded by the EEG and eye-
tracking signals, we adapted the hierarchical discrim-
inant component analysis seen in [19] to build our
hybrid classifier. First the epoched EEG ICs data were
divided into 10, 100 ms, bins from 0 to 1000 ms rel-
ative to locking condition. Fisher linear discrimin-
ant analysis (FLDA) was performed on each bin to
determine the within-bin weights across ICs:

wj = (Σ+ +Σ−)
−1(µ+ +µ−), (1)

where wj is the vector of within-bin weights for bin j,
µ andΣ are the mean and covariance of the EEG data
in the current bin, and+ and− subscripts refer to tar-
get and distractor trials, respectively. The weights wj

were then applied to the IC activations xji to determ-
ine the within-bin interest score zji for each bin i and
each trial j:

zji = w
T
j xji. (2)

Similarly, FLDAwas performed on the pupil diameter
and dwell time data. The epoched pupil diameter
data was divided into six 500 ms bin and averaged
within each bin from 0 to 3000 ms based on locking
condition. The average was passed through FLDA to
determine within-bin interest score. The dwell time
data was also passed through FLDA. The within-bin
interest scores for each feature were then normalized
by dividing by their standard deviation across trials.
To construct the second-level feature vector, the EEG,
pupil diameter and dwell time normalized interest
scores were appended into a single column vector.

To visualize the contributions of each EEG
data channel to the discriminating components, we

calculated and plotted the scalp topography of the for-
wardmodels for each 100ms bin of the EEG data. For
each bin j, the zij values were appended across trials
into a column vector zj and the xji vector into mat-
rix Xj. The forward model aj can then be calculated
as follows:

aj =
Xjzj
zTj zj

. (3)

For cross-bin classification, logistic regressionwas
applied to the second-level feature vector zi for each
trial to determine the cross-bin weights v (across time
bins and modalities):

v= argmin
v

(∑
i

log{1+ exp[−civ
Tzi]}

)
(4)

where ci denotes the class (+1 for targets and −1
for distractors) for trial i. The cross-bin weights
were then used to calculate the final single cross-bin
interest score yi for each trial:

yi = v
Tzi (5)

Ten-fold cross validation was used to create the train-
ing and testing sets. The area under the receiver oper-
ating characteristic (ROC) curve (AUC) was used to
quantify the performance of the classifier. For com-
parison, we also constructed single-modality classifi-
ers using the same procedures as described above but
only using single-modality within-bin interest scores
(EEG only, pupil diameter only or dwell time only).

2.6.2. Gaze events-based epoch time-locking
In order to explore the temporal variations in the
reorienting signals, the EEG and pupil diameter data
were epoched based on the timing of the gaze events
during each specific trial—IO, FS and FF. As the name
suggested, IO refers to the time point in which the
image first appeared on the billboard for that trial.
The EEG and pupil diameter data were then epoched
with zero starting at the time of IO for that trial. FS
refers to the time point in which the subject’s eye
began moving from center towards the image on the
billboard while FF refers to the time point in which
the subject’s eye began fixating on the image on the
billboard. Similarly, the EEG and pupil diameter data
were then epoched with zero starting at the time of FS
and FF for that trial, respectively.

2.6.3. General linear model (GLM) analysis
We further investigated the relationship between the
orienting signals and gaze events by performing a gen-
eral linear model (GLM) analysis. We fitted the dis-
criminating components (e.g. the cross-bin interest
score), yi derived from the EEG-only and pupil
diameter-only classifiers for each trial with the fol-
lowing four measurements derived from the piece-
wisemodeling of gaze data, namely the initial fixation
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(peripheral) time, the time of FS, the dwell time and
the time of RS. All measurements were normalized
within each subject before the GLM was performed.
We utilized mixed-effects GLM in order to take into
account the variability in the distributions of beta
weights across subjects. The setup for our mixed-
effects GLM is as followed:

Yi = Xiβ+Zib+ ϵ, (6)

where Y i refers to the vector of the discriminating
components yi, Xi refers to the gaze events time mat-
rix, β refers to the gaze events time-effects vector, Zi

refers to the inter-subject variability design matrix,
b refers to the inter-subject variability-effects vector
and ϵ to the random error term. We also performed
a second set of GLM analysis by first orthogonaliz-
ing the four different regressors with the dwell time
of each trial before fitting it against the discrimin-
ating components derived from the EEG-only and
pupil diameter-only classifiers. This is done in order
to investigate the contributions of the three remaining
time measurements (peripheral, FS and RS) without
the effects of the dwell time.

3. Results

3.1. Behavioral gaze results
Gaze behavior of the subjects differs significantly
between the fixed and the free conditions as indic-
ated by the amount of time the subjects spent on each
gaze event (figure 2).While the subjects spent roughly
the same amount of time, on average, in the peri-
pheral gaze event (Fx= 272 ms, Fr= 257 ms), they
spent significantly longer amount of time in the free
condition for the rest of the gaze events we identi-
fied (Student’s paired t-tests, p< .001), including FS
(Fx= 73 ms, Fr= 96 ms), dwell time (Fx= 320 ms,
Fr= 533 ms) and RS (Fx= 161 ms, Fr= 207 ms).
These results are in line with the example shown in
figures 1(b) and (c). In the fixed condition, subjects’
gaze travels to the image and tracks it during the dwell
time section before returning to the middle fixation
with no head movement. However, in the free condi-
tion, subjects’ gaze first travels to the billboard before
their head rotation follows, resulting in longer FS and
dwell time on the billboard. Furthermore, their gaze
then return to the middle fixation prior to their head
rotation returning to the starting position, also lead-
ing to longer RS time. These results are in line with
results found in previous eyetracking studies in which
head movements were involved [20, 21].

3.2. Grand average pupil dilation and EEG ERPs
results
Grand average EEG event related potentials (ERPs)
for the three midline electrodes (Fz, Cz and Pz) are
plotted in figure 3(a). The overall pattern and time
course for the ERPs are in line with other target

detection studies [22–24]. The separation between
the ERPs for the target and distractor trials are more
pronounced in the Cz and Pz channels than in the Fz
channel. Qualitatively, the P300 peak appears sharper
in the fixed condition than in the free conditionwhere
it ismore distributed over time. This result is expected
due to the nature of the paradigm in which the sub-
jects move their head in the free condition and spends
more time across different gaze events (figure 2).
Grand average pupil dilation across subjects for tar-
get and distractor trials are plotted in figure 3(b). The
overall time course for pupil dilation (around 1–2 s
following stimuli onset) is in linewith the results from
other target detection studies [19, 25]. Overall the
pupil dilates more for target trials than for distractor
trials in both the fixed and the free conditions. The
sharper pupil dilation more pronounced in the fixed
condition around 500ms following stimuli onsetmay
be explained by the ocular muscle-related dilation
from the wide-angle saccade the subjects made to see
the images on the billboards [26, 27].

3.3. Relationship between the orienting signals and
gaze events
To determine the relationships between the EEG and
pupil orienting signals and different gaze events time,
we first developed EEG-only and pupil-only classi-
fiers using the HDCA algorithm described in the
Methods section. The cross-bin weights of the EEG-
only classifier are shown in figure 4(a). The cross-
bin weights for both the fixed and free condition
peak roughly around 500–600 ms which correspond
to the peak time of the P300 signal. Similarly, the for-
ward models calculated from the EEG-only classifiers
(figure 4(b)) also show the pattern of the P300 signal
peaking roughly between 500 and 600ms after stimuli
onset. Figure 4(c) shows the cross-bin weights of the
pupil diameter-only classifier. The cross-bin weights
for the pupil diameter-only peak around 1700 ms for
both the fixed and free condition, which also cor-
respond to the time of grand average pupil dilation
shown in figure 3(a).

Based on the results of the EEG-only and pupil
diameter-only classifiers, we used the cross-bin
interest scores (e.g. discriminating components) of
each trial to be the representative of the strength
of the orienting signals of that respective trial. We
then performed a mixed-effects GLM fit between the
EEG-only and pupil diameter-only discriminating
components and the four different gaze events time.
We also performed the same analysis after ortho-
gonalizing the four different gaze events time against
the dwell time for each trial. The GLM fit estimates
for the EEG-only analysis are plotted in figure 5(a).
The beta weight estimates (β) for both the fixed and
free conditions are greatest for the dwell time. How-
ever, the beta weight for FS is only significant in
the free and not the fixed condition. After the four
regressors were orthogonalized against the dwell time
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Figure 2. Average time in which the subjects spent on the four different gaze events (peripheral, first saccade, dwell time and
return saccade) during each experimental trial for the fixed (Fx) and free (Fr) condition. The bar graph represents the grand
average across subjects while different color lines represent each subject’s average (N= 18). Black asterisks represent significant
mean differences across conditions (Student’s paired-sample t-tests, p< .001).

of each trial, the beta weight estimates become neg-
ative for the peripheral and FS time in the fixed con-
dition and only for the peripheral time in the free
condition. These results suggest that subjects tend to
move their eyes away from center (e.g. lower peri-
pheral time) during target trials both in the fixed and
free condition and saccade towards targets faster in
the fixed condition. Similarly, for the GLM estimates
for the pupil diameter-only discriminating compon-
ents (figure 5(b)), the beta weights are highest for the
dwell time in both the fixed and free conditions with
the beta weight for the second saccade being signi-
ficant only in the free and not the fixed condition.
The orthogonalized beta weight results for the pupil
diameter-only discriminating components show sig-
nificant negative values for the FS and RS in the fixed
condition and peripheral and FS in the free condi-
tion. These results both demonstrate a shift forward
in time compared to the orthogonalized EEG-only
beta weight estimates.

3.4. Hybrid classifier performance
Following the development of the single-modality
classifiers, we developed a hybrid classifier using the
combination of EEG, pupil diameter and dwell time
signals, inwhich the performance is shown in figure 6.
Figure 6(a) shows each subject’s AUC for the hybrid
classifier compare to the single-modality classifiers.
The subjects are sorted in descending order of the
EEG-only AUC to highlight the importance of the
hybrid classifier. Overall, the AUC of the hybrid
classifier tracks and exceeds the AUC of the single-
modality classifier which yields the highest AUC for
that subject in both the fixed and in the free condi-
tion. We show that the hybrid classifier performed

significantly better than each of the single-modality
classifier in figure 6(d) (Student’s paired-sample t-
tests, p< .05). The cross-bin weights and the EEG for-
ward models of the hybrid classifier are shown in
figures 6(b) and (c), respectively. The patterns for
the cross-bin weights for both the EEG and the pupil
diameter are similar to that of the cross-bin weights
derived from the single-modality classifiers shown
earlier in figures 4(a) and (c), with the EEG weights
peaking around 500–600 ms and the pupil diameter
weights peaking around 1700 ms. Similarly, the for-
ward models derived from the hybrid classifier also
show the pattern of the P300 signal peaking at approx-
imately 500–600ms following IO. In addition, we also
compared the performance of the hybrid and single-
modality classifiers across the fixed and the free con-
ditions as shown in figure 6(e). We did not find any
significant difference in the AUC for the hybrid or any
of the single-modality classifiers across the two con-
ditions (Student’s paired-sample t-tests). This result
demonstrates that the classifiers are able to capture
the reorienting signals both in the control scenario
and in the more naturalistic scenario of our exper-
iment. Lastly, we compared the AUC results for the
hybrid and single modality classifiers across differ-
ent types of epoch time locking (as described in the
Methods section). We found no significant differ-
ences across the three locking types (e.g. IO locked,
FS locked and FF locked) for all classifiers in both
the fixed and free conditions. This result demon-
strates that the reorienting signals are not locked
to one particular gaze-based event but are decom-
posed across multiple different gaze events, which is
consistent with other results presented earlier in this
study.
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Figure 3. Grand average EEG event related potentials (ERPs) and pupil dilation for targets (red) and distractor (blue) trials for the
fixed (left column) and the free (right column) condition, where t= 0 is locked to the time of image onset. Translucent areas
represent standard error across subjects (N= 18) while the dotted black line represents the difference between the mean value for
target and distractor trials. (a) Standardized grand average ERPs along the three midline electrodes (Fz, Cz and Pz).
(b) Standardized mean pupil dilation across subjects.

4. Discussion

4.1. Moving towards more naturalistic
experimental environments
Attention reorienting is without a doubt a com-
plex set of processes. It involves multiple neural
and physiological systems working together to redir-
ect our attention to new and novel stimuli in the
environment. Using standardized paradigms, typ-
ically with no head movement and minimal eye
movement, previous studies have identified neural
and physiological signatures associatedwith attention
reorienting, namely the EEG P300 and pupil dilation
[2, 12, 14, 22]. The fixed condition of our studymim-
ics these standardized paradigms, by limiting the
head movement of the subject and only allowing

eye saccades to be made. Unsurprisingly, the grand
average ERP and pupil diameter results of the fixed
condition show a clear and pronounced P300 and
pupil dilation peaks. However, in the free condition
where both head and eye movements were allowed,
the P300 and pupil dilation become much more spa-
tially and temporally distributed (figure 3). This res-
ult coincides with the behavioral results shown in
figure 2 where the subjects take significantly longer
time to saccade and fixate on the stimuli when
head movements were made. Considering that many
BCIs utilize these neural and physiological signals as
measures of subject’s attention, the greater spatial and
temporal distributions of these signals pose direct
challenge to the performance of these BCIs in more
naturalistic environments. To address this issue, we

8
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Figure 4. Cross-bin weights and forward models from the EEG-only and pupil diameter-only single-modality classifier for the
fixed condition (left column) and the free condition (right column). (a) Top: the mean cross-bin weights (across 10 validation
folds and 18 subjects) from the EEG-only classifier. The error bars represent the standard error across 18 subjects with the timing
of each bin relative to the time of image onset for each trial. Bottom: the mean forward models (across 10 validation folds and 18
subjects) calculated using the within-bin weights from each bin of the EEG-only classifier as described in equation (3). (b) The
mean cross-bin weights (across 10 validation folds and 18 subjects) from the pupil diameter-only classifier. The error bars
represent the standard error across 18 subjects with the timing of each bin relative to the time of image onset for each trial.

first explore the relationships between the neural and
physiological signals associated with attention reori-
enting and the different gaze events taken place when
subjects reorient their visual attention to the stimuli
in the environment.

4.2. Relationship between gaze events and
attention reorienting
In order to study the relationship between the ori-
enting signals and different gaze events, we must
first divide the continuous gaze information collected

from each trial into concrete events. We chose to
divide the continuous gaze data into four distinct
gaze events, peripheral, FS, dwell time and RS, as
they are generally applicable to how a person might
observe an object in real world environments and are
understood to effect the reorienting response [28, 29].
In realistic scenarios such as the task employed in
the current study, the subjects must not only reori-
ent their attention to the stimuli but also reorient
their attention back to the center fixation prior to
the arrival of the subsequent stimuli. Therefore, we

9
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Figure 5. General linear model (GLM) fit between the EEG and pupil diameter discriminating components and the four different
gaze events time (PE—peripheral, FS—first saccade, DT—dwell time and RS—return saccade) for the fixed condition (left
column) and the free condition (right column). The non-shaded bars represent the beta weight estimates from the
non-orthogonalized GLM fit while the shaded bars represent the beta weight estimates after the time regressors were
orthogonalized against the dwell time (DT) for each trial. The black asterisk indicates the beta weight estimate that significantly
differs from 0. (a) The mixed-effects GLM fit coefficient estimates (β) between the EEG discriminating components derived from
the EEG-only classifier and the four different gaze events time. (b) The mixed-effects GLM fit coefficient estimates (β) between the
pupil diameter discriminating components derived from the pupil diameter-only classifier and the four different gaze events time.

consider the RS to be part of the reorientation loop.
We performed the GLM analysis using the time of
the four different gaze events as the regressors to the
discriminating components derived from the EEG-
only and the pupil diameter-only classifiers. The beta
weight estimates in both the EEG-only and pupil
diameter-only analyses and across both the fixed and
free condition suggest that the dwell time of each
trial contributes most significantly to the reorient-
ing signals. Considering that the dwell time by itself
can be used to distinguish between target and dis-
tractor stimuli in most subjects (figure 6(a)), and
similarly in previous studies [19, 30, 31], this result
confirms the importance of dwell time in attention
reorienting.Here we also performed the second set
of GLM analysis by orthogonalizing the dwell time,
the most important contribution to the reorienting
signals, against of the other three time regressors.
With the dwell time removed, the negative betaweight
estimates suggest that while the other gaze events
are still important to the reorienting signals, they
are negatively correlated. The EEG-only results sug-
gest that the subjects spend less time fixating in the
middle (i.e. lower peripheral gaze event time) when

target image appears in both the fixed and free con-
dition and also saccade to the target image faster
(e.g. lower FS time) in the fixed condition. The slight
positive FS beta weights in the free condition may
be explained by the longer FS time overall for that
condition. Meanwhile the pupil diameter-only res-
ults show negative beta weights estimate for FSs and
RSs for the fixed condition and for peripheral and
FS for the free condition. These results demonstrate
a forward shift in time in comparison to the EEG-
only results, suggesting that the neural and ocular
reorienting response might be processed by differ-
ent but connecting brain regions. This theory is in
line with recent works connecting the cortical signa-
tures of reorienting mediated by the ventral atten-
tion system (e.g. the P300 signal) to that of the sub-
cortical signatures (e.g. pupil dilation) mediated by
the LC-NE system [8, 32]. It has been proposed that
the activity of the LC is ‘informed’ by the connect-
ing cortical structures such as the posterior cingulate
cortex (PCC) and the anterior cingulate cortex (ACC)
[7, 8, 32]. The results of the current study, specifically
the forward shift in time in the pupil reorienting
signals compared to the EEG reorienting signals as
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Figure 6. Results and performance of the hybrid classifier in comparison to single-modality classifiers for the fixed condition
(left column) and the free condition (right column). (a) The area under the ROC curve (AUC) of the hybrid classifier and
single-modality classifiers for all subjects (N= 18). The subjects are sorted by the performance of their EEG-only classifier.
(b) The mean cross-bin weights (across 10 validation folds and 18 subjects) from the hybrid classifier. The error bars represent the
standard error across 18 subjects with the timing of each bin relative to the time of image onset for each trial. The dwell time
weight’s horizontal position and error bars represent the mean and standard error of the subject’s mean dwell time. (c) The mean
forward models (across 10 validation folds and 18 subjects) calculated using the within-bin weights from each bin of the hybrid
classifier. (d) The bar graphs represent the mean AUC across subjects for the hybrid classifier in comparison to the EEG-only,
pupil diameter-only (pupil) and dwell time-only (DT) classifiers. Each line graph represents the subject’s AUC for each type of
classifier. Hybrid classifiers perform significantly better than all single-modality classifiers in both conditions. (e) The bar graphs
represent the mean AUC across subjects for the hybrid (Hy), EEG-only (E), pupil diameter-only (Pu) and dwell time-only (DT)
in comparison between the fixed (Fx) and the free (Fr) conditions. Each line graph represents the subject’s AUC for each type of
classifier and condition. Overall, the mean AUC does not differ significantly across conditions for all types of classifiers.
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indexed by the gaze events, provide support for this
theory.

4.3. Capturing and integrating attention
reorienting signals in naturalistic environments
One of the main aims of the current study is to cap-
ture and integrate the neural and physiological sig-
nals underlying attention reorienting in naturalistic
environments. While the hybrid HDCA classifier has
previously been shown to successfully classify target
and distractor stimuli in a 2D screen-based environ-
ment [19], our study is the first application of the
hybrid HDCA classifier in a VR-based 3D environ-
ment. The results of the current study show that not
only were the hybrid classifier able to classify the type
of stimuli the subjects observed in a more immers-
ive and naturalistic environment, it was able to per-
form equally well even when the subjects moved their
heads in the free condition. The implication of this
result is that despite the greater temporal distribu-
tion of the reorienting signals across trials in themore
naturalistic condition, the hybrid classifier is still able
to capture and integrate the information within these
signals. We also demonstrate the benefits of utilizing
multiple neural and physiological signal modalities to
improve the classification performance of the classi-
fier. While each single modality (EEG, pupil diameter
and dwell time) contains the reorienting information
on its own, combining the information across mod-
alities significantly improves the classification per-
formance both in the fixed and in the free condition.
While the use of a hybrid classifier to classify targets
vs. non target stimuli is still rare, the performance of
our classifier is comparable to those of previous tar-
get detection studies typically done outside of a VR
headset [19, 33, 34]. Our results therefore suggest that
the hybrid HDCA classify may potentially serve as
a basis for the development of attention-based BCI
applications that can perform well in realistic scen-
arios and not only in well-controlled experimental
environments.

4.4. Limitations/future directions
While the current study has shed light on some of
the questions surrounding the dynamics of atten-
tion reorienting signals in naturalistic environments,
many of them still remain unanswered. One of the
major limitations to our study design is despite the
subjects’ ability to move their head, the movement is
still limited to one plane of motion. With the use of
HMD VR goggles, a study in which subjects are free
to move in all planes of motion in a ’visual search’
task may answer further questions regarding the ori-
enting of attention in realistic scenarios [35, 36]. In
addition, while the current study attempted to divide
the subjects’ gaze direction into distinct events, gaze
movements in realistic scenarios have been shown to
be more complex, with saccade and fixation events
constantly interleaving in time [37, 38]. Lastly, while

the hybrid HDCA classifier demonstrates good per-
formance in the current work, further studies are
required to investigate the possibility of applying it in
a closed-loop system in order to serve as a basis for
the development of a real-time BCI application.

5. Conclusion

In this study, we explored the relationship between
gaze events and attention reorienting signals in a
more naturalistic environment. We determined that
dwell time contributes most significantly to both
the ocular and neural reorienting signals. However,
the distribution of the reorienting signals across the
remaining gaze events, namely peripheral, FS and RS,
are different across the two modalities. Specifically,
the pupil reorienting signals show a forward shift
in time in comparison to the EEG reorienting sig-
nals, consistent with the theory in which the cortical
regions of the ventral attention network (e.g. ACC
and PCC) modulates the activity of the subcortical
regions associated with the reorienting process (e.g.
the LC-NE system). Nevertheless, when applying the
hybrid classifier which combines the EEG, pupil dila-
tion and dwell time signals together, it was able to
capture and integrate the reorienting signals across
different modalities and classify target vs. distractor
stimuli with high accuracy. We expect the results of
this study will provide the basis for the development
of an attention-based BCI system that can operate in
more naturalistic environment in the future.
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