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Abstract 
Objective. Nonlinear system identification approaches were used to develop a dynamical 
model of the network level response to patterns of microstimulation in vivo. Approach. The 
thalamocortical circuit of the rodent vibrissa pathway was the model system, with voltage 
sensitive dye imaging capturing the cortical response to patterns of stimulation delivered from 
a single electrode in the ventral posteromedial thalamus. The results of simple paired stimulus 
experiments formed the basis for the development of a phenomenological model explicitly 
containing nonlinear elements observed experimentally. The phenomenological model was fit 
using datasets obtained with impulse train inputs, Poisson-distributed in time and uniformly 
varying in amplitude. Main results. The phenomenological model explained 58% of the 
variance in the cortical response to out of sample patterns of thalamic microstimulation. 
Furthermore, while fit on trial-averaged data, the phenomenological model reproduced single 
trial response properties when simulated with noise added into the system during stimulus 
presentation. The simulations indicate that the single trial response properties were dependent 
on the relative sensitivity of the static nonlinearities in the two stages of the model, and 
ultimately suggest that electrical stimulation activates local circuitry through linear 
recruitment, but that this activity propagates in a highly nonlinear fashion to downstream 
targets. Significance. The development of nonlinear dynamical models of neural circuitry will 
guide information delivery for sensory prosthesis applications, and more generally reveal 
properties of population coding within neural circuits. 

(Some figures may appear in colour only in the online journal) 

1. Introduction 

Artificially activating neural cells has a long history, pre-
dating even the recording of the electrical activity of neurons. 
As early as the late 1800s, electrical stimulation was used 
to activate neurons in the central nervous system (Fritsch 
and Hitzig 1870, Schafer 1888). The maturity of electrical 
stimulation as a means for artificially activating neurons is 
evident in the long history of studies concerning the effects 

of electric fields on single neurons at the microscopic scale 
(Stoney et al 1968, Jankowska and Roberts 1972, Ranck 
1975) and as an input in behavioral studies at the macroscopic 
scale (Salzman et al 1992, Romo  et al 1998, Pezaris and 
Reid 2007, O’Doherty et al 2009). Despite this fact, how 
electrical stimulation activates and engages the population of 
neurons within the neural circuit that ultimately gives rise to 
behavioral percepts is far less well understood, creating an 
obstacle for the advancement of sensory prostheses. 
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Sensory prostheses seek to use electrical stimulation to 
deliver information to the brain about the sensory environment 
when the native neural pathways have been damaged due 
to trauma or disease. While peripheral sensory prostheses, 
like the cochlear or retinal implants, have been successful 
(Humayun et al 2003, Wilson and Dorman 2008), attempts at 
delivering information directly to the central nervous system 
have proven difficult. Whether the aim is to reproduce natural 
neural activity or merely to deliver discriminable inputs to 
the brain, the advancement of sensory prostheses requires a 
greater understanding of the mapping from electrical stimuli 
to neural response within complex circuits and the resulting 
propagation along neural pathways. 

Recent work has pushed towards recording population 
responses downstream of the delivery of patterned 
microstimulation in vivo (Castro-Alamancos and Connors 
1996, Kara  et al 2002, Butovas and Schwarz 2003, Civillico 
and Contreras 2005, Histed et al 2009, Logothetis et al 
2010, Brugger et al 2011, Weber et al 2011). In all but the 
simplest scenarios, the neural response to electrical stimulation 
is highly nonlinear, ranging from paired stimulus facilitation 
in the thalamocortical augmenting response (Dempsey and 
Morison 1943, Castro-Alamancos and Connors 1996) to paired 
stimulus suppression at the level of the cortex (Kara et al 
2002, Butovas and Schwarz 2003). Furthermore, the nonlinear 
effects of natural sensory stimuli and electrical stimuli are 
behaviorally and electrophysiologically different, indicating 
that electrical stimuli activate neural circuits in a manner 
distinct from the natural physiological recruitment (Logothetis 
et al 2010, Masse and Cook 2010). In order to design patterns 
of stimulation to faithfully represent ongoing changes in the 
sensory environment for prosthesis applications, particularly 
in the central nervous system, we must develop predictive 
models of these dynamical nonlinear mappings in vivo. Here  
we perform nonlinear system identification within the central 
nervous system, specifically using the thalamocortical circuit, 
to model the system dynamics in response to patterns of 
microstimulation. 

System identification has a long history of application 
in sensory neuroscience for creating nonlinear dynamical 
models (Krausz 1975, Marmarelis and Marmarelis 1978, 
Hunter and Korenberg 1986, Wu  et al 2006). Typically, 
system identification takes advantage of nonparametric model 
structures capable of estimating complicated system dynamics 
with few assumptions; however, these types of models often 
require a large amount of data to fit (Marmarelis 2004). In vivo 
experimental models are typically limited in the amount of 
data that can be realistically collected during an experimental 
session, often precluding the high-order modeling that is 
necessary to adequately capture the complexity of the system. 
However, through a combination of nonparametric modeling 
and empirical observations of the system, it is possible to 
constrain the model subspace, greatly reducing the number 
of parameters needed, while only minimally restricting the 
generality of the model (Morrison et al 2008, Stern  et al 2009). 

Through both nonparametric and parametric system 
identification techniques, we develop a model of the nonlinear 
system dynamics in the thalamocortical circuit in vivo. 

Specifically, using voltage sensitive dye imaging (VSDI) 
techniques, we recorded the cortical layer 2/3 response 
to upstream microstimulation in the ventral postero-medial 
(VPm) region of the thalamus in the anesthetized rat. The 
canonical network architecture of the thalamocortical circuit 
(Sherman and Guillery 1996), along with the extensive 
literature on the anatomy of the rodent vibrissa system 
(Woolsey and Van der Loos 1970, Diamond et al 2008), makes 
this an ideal model system for studying the network level 
neural response to electrical stimuli. Systematic probing of 
the input–output relationship enabled the development of a 
nonlinear phenomenological model based upon experimental 
observations that is highly predictive of the cortical 
response to patterns of thalamic microstimulation. The 
ultimate structure of the model revealed complex interactions 
within a multi-stage architecture composed of canonical 
facilitative and suppressive dynamics, and a sensitivity 
to noise that mediates trial-by-trial bimodality in the 
facilitative/suppressive dynamics. Finally, from simulations 
with the model, we suggest that electrical stimulation activates 
local circuitry through linear recruitment, but that this activity 
propagates in a highly nonlinear fashion to downstream targets. 
More generally, the nonlinear dynamical model developed in 
this study informs future encoding schemes that map sensory 
signals to patterns of microstimulation for sensory prosthesis 
implementation. 

2. Methods 

2.1. Experimental preparation 

All procedures were approved by the Georgia Institute of 
Technology Institutional Animal Care and Use Committee 
and followed guidelines established by the National Institutes 
of Health. Female Sprague-Dawley rats (250–300 g) were 
initially anesthetized with 4% isoflurane before intraperitoneal 
injection of Nembutal (50 mg kg−1 weight) for long term 
anesthesia. Subsequent doses of Nembutal were used to 
maintain a surgical level of anesthesia. 

Animals were mounted in a stereotactic device and 
a craniotomy was performed over the left parietal cortex 
(coordinates: 1–4 mm posterior to bregma, 4–7 mm lateral 
to midline) to expose the barrel representation of the primary 
somatosensory cortex (Paxinos and Watson 2007). Another 
craniotomy was performed to allow access to the VPm region 
of the thalamus (coordinates: 2–4 mm posterior to bregma, 
1.5–2.5 mm lateral to midline, 4.5–5.5 mm depth at a 12◦ 

angle to brain surface). A diagram of the in vivo experimental 
preparation is shown in figure 1(a). 

2.2. Voltage sensitive dye imaging 

VSDI was used to monitor cortical activation in response 
to thalamic microstimulation. After the craniotomy was 
performed, the dura was allowed to dry for 15 min according 
to the protocol of Lippert et al (2007). The cortex was 
stained with dye RH1691 (1 mg mL−1; Optical Imaging, 
Rehovot, Israel) for 2 h and subsequently washed for 30 min. 
After washing the cortex, saline was deposited in the cranial 
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Figure 1. VSDI captures the cortical response with high spatial and temporal resolution. (a) Diagram of the imaging system. The electrode 
is positioned in a ‘barreloid’ in the thalamus, a collection of cells that respond most vigorously to a common whisker. Imaging in cortex 
captures the response of each cortical column. (b) Histological analysis provides an anatomical map of the cortical column structure (see 
methods). (c) The anatomical map is aligned to the VSDI image through a least squares mapping to functional data. (d) The cortical 
response to electrical microstimulation of the thalamus begins ∼5–10 ms after stimulation, but quickly grows in amplitude and spreads 
spatially. Scale bars in (b), (c), and (d) are 500 μm. 

window. A 1.0 × magnification lens was used in conjunction 
with a 0.63 × condenser lens to provide 1.6 × magnification 
(48 pixels mm–1). A 150 W halogen lamp filtered at 621– 
634 nm wavelength was used for imaging the brain surface and 
providing excitation of the dye. The VSDI data were acquired 
at 5 ms interframe intervals beginning 200 ms preceding 
stimulus presentation. A diagram of the VSDI setup is included 
in figure 1(a). 

Multiple trials of VSDI data were collected for each 
stimulus. For each trial, the 40 frames (200 ms) collected 
before the presentation of the stimulus were averaged to 
calculate the background fluorescence, against which the 
activation was measured. For each frame, the background 
fluorescence was subtracted to produce a differential signal 

F . Additionally, each frame was divided by the background 
image to normalize for uneven illumination and staining to 
produce the signal F/F0. For presentation purposes only, the 
individual trials were averaged together and then filtered with 
a 9  × 9 pixel  (∼200 μm × ∼200 μm) spatial averaging filter. 

For model development, the VSDI data were functionally 
registered to the anatomical map of the barrel cortex in order 
to discretize the spatiotemporal cortical signal with regard 
to well-defined cortical columns. The outlines of the barrel 
cortex columns within a cytochrome oxidase stained tangential 
slice, shown in figure 1(b), were created using the Neurolucida 
software (MBF Bioscience, Williston, VT) and imported into 
MATLAB (MathWorks, Natick, MA). The functional cortical 
columns were determined in the VSDI data by deflecting a 
single whisker using a piezoelectric actuator and recording 
the cortical response (for methods, see Wang et al 2012). The 
initial frame of cortical activation, which has previously been 
shown to be restricted to a single cortical column (Petersen 
et al 2003a), was captured for deflection of 4–6 different 
whiskers during each experiment. An example of the initial 
VSDI activation in response to the deflection of six different 
whiskers is overlaid in figure 1(c). 

The anatomical mapping from histology was registered 
with the functional column mapping from VSDI by solving a 
linear inverse problem, the details of which are described in 

Wang et al (2012). Following the functional image registration, 
the cortical response was discretized, where each signal 
corresponds to a single functional cortical column. In so doing, 
the VSDI signal was averaged spatially within the contour of 
the cortical column. An example of the spatiotemporal VSDI 
response to a single electrical stimulation pulse is shown in 
the top portion of figure 1(d), with the discretized temporal 
trace shown in figure 2(a). The registration procedure did not 
produce results qualitatively different from averaging within 
a contour defined by the VSDI activation in response to a 
single whisker deflection. However, the added benefit of the 
registration procedure was to generate an output for each of the 
32 whiskers in the anatomical map, using only the functional 
response to the deflection of a few whiskers. In this way, the 
model was extended spatially (see sections 2.5 and 3.4) to  
capture the response of all cortical columns within the barrel 
cortex. 

2.3. Electrical stimulation 

A glass coated tungsten microelectrode (impedance = 1–2 M 
at 1 kHz) was advanced to the VPm region of the thalamus 
using a precision microdrive (Knopf Instruments, Tujunga, 
CA). The principal vibrissa was determined by manually 
deflecting individual whiskers and confirmed using the latency 
and spike count of single unit recordings in response to 
controlled whisker deflection using a piezo-electric actuator 
(Wang et al 2010). In the event that single unit recordings 
could not be achieved, multi-unit activity was used. 

Following electrophysiological determination of the 
electrode position and its associated principal vibrissa, 
the electrode was used to deliver microstimulation to 
the surrounding tissue. The stimulus waveforms were 
designed using a digital stimulus generator (WPI Inc., 
Sarasota, FL) and delivered using a current controlled, 
optically isolated stimulator (WPI Inc., Sarasota, FL). 
Individual electrical stimuli were charge-balanced, cathodal-
first, biphasic waveforms of 200 μs duration per phase. A 
diagram of the stimulus waveform is displayed in figure 2(a). 
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Figure 2. Microstimulation of the thalamus produces a nonlinear cortical response. (a) Top: by averaging within a single cortical column, 
we obtain a timecourse of cortical activation with high signal to noise ratio. The ‘tick’ represents the presentation time of the stimulus, 
which is a symmetric biphasic current waveform. The height of the ‘ticks’ throughout the paper indicates the current amplitude of the 
stimulus. Microstimulation elicited a characteristic timecourse in the cortical response (single trials in gray, trial-averaged response in 
black). Bottom: when normalized by the amplitude of the response, the timecourse was consistent across a wide range of stimulus intensities 
and response amplitudes. (b) The amplitude of the cortical response displayed a nonlinear relationship with the current intensity of the 
single electrical stimulus. The currents used in (a) are color-coded in (b) for reference. (c) Microstimulation of the thalamus engaged two 
sets of nonlinear dynamics. A strong electrical stimulus (left column) suppressed the response to a second electrical stimulus, with the 
suppression decreasing for long inter-stimulus intervals. A weak electrical stimulus (right column), however, caused profound facilitation of 
the response to the second stimulus. This facilitation principally occurs for inter-stimulus intervals of 100–200 ms. 

More complicated stimuli were generated through temporal 
patterns of this base stimulus unit with varying amplitudes. 
Although we have recently shown a topographic displacement 
of the spatial cortical response to symmetric and asymmetric 
waveforms of thalamic microstimulation (Wang et al 2012), 
we observed no difference in the dynamics presented in this 
study between the two stimulus waveforms (data not shown). 

Three different stimulation protocols were used in this 
study. A series of single electrical stimulation pulses with 
varying amplitude between 10 and 100 μA was used to test 
the static nonlinearity of the system (shown in figure 2(b), 
discussed in section 3). The current range was chosen to 
elicit the full range of sub-threshold to maximal cortical 
responses. To sample the nonlinear dynamics of the system, 
pairs of electrical stimulation pulses were delivered with 
varying inter-stimulus intervals between 50 and 500 ms. For 
the system identification procedure, random impulse trains 
were generated, where the event times were determined by 
a Poisson distribution and the intensities of the events were 
drawn randomly from a set of current amplitudes (30, 40, 50, 
60, 80, 100 μA), all with equal probability. Throughout the 
remainder of the paper, these stimuli will be referred to as 
random amplitude Poisson (RAP) impulse trains, consistent 
with previous literature (Wu and Sclabassi 1997). In four 
experiments, 20 different random instances of RAP impulse 
trains were used with a Poisson homogeneous rate of 10 Hz, 
while the remaining three experiments used 30 different 

random instances with a Poisson homogeneous rate of 3 Hz. 
The results were not qualitatively different using the two 
different stimulus rates. While previous studies have used high 
frequency pulse trains as the fundamental unit for stimulating 
the brain (Romo et al 1998, Pezaris and Reid 2007, Logothetis 
et al 2010, O’Doherty et al 2012), we treated each single 
stimulus pulse as its own event. Given the inter-event intervals 
were generated from a Poisson process, the RAP stimulus 
presented a wide bandwidth (up to 500 Hz) to the experimental 
system. 

2.4. System identification 

Two different model structures were used in this study: a 
second order Volterra series and a custom phenomenological 
model. Each model was fit using the cortical response, r[n], 
averaged within the principal cortical column, to the RAP 
impulse trains, s[n], where n are the discrete timepoints 
sampled by the VSD imaging for a given trial of length T . 
A block diagram of the experimental system is shown in 
figure 3(a). Each electrical stimulus was considered a discrete 
Dirac delta function with amplitude in units of μA. The second 
order Volterra series was fit according to the cross-correlation 
based methods of Wu and Sclabassi (1997). The parameters of 
the phenomenological model were fit simultaneously through 
a least squares regression algorithm in MATLAB. Confidence 
intervals on the parameters were estimated by fitting the 
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Figure 3. Nonlinear modeling architecture. (a) The goal of the study was to create a nonlinear dynamical model of the response of the 
thalamocortical circuit to patterns of thalamic microstimulation. A train of microstimulation pulses was delivered as the input, while a 
continuously varying signal, generated by averaging within a single cortical column, was used as the output. (b) A second order Volterra 
series model was developed in an attempt to capture the dynamics of the system. The kernels of the model mapped trains of discrete inputs 
to continuously varying signals. (c) Top: the phenomenological model was developed according to experimental observations described in 
figure 2. The response of the system was similar in shape, regardless of stimulus or response amplitude, allowing separation of the model 
into a nonlinear mapping of discrete impulses followed by a linear filter. Middle: further, two distinct sets of dynamics were observed and 
directly incorporated into the model architecture. Bottom: each of the two stages within the model was comprised of a canonical unit, in 
which the static and dynamic nonlinearity were independently modeled and parameterized. 

models with shuffled versions of the stimuli, where each 
instance of the RAP impulse train was randomly reassigned 
to a cortical response generated by a different instance of the 
stimulus. 

The models were cross-validated using the ‘leave one 
out’ method (Kearns and Ron 1999). The models were fit 
using all but one instance of the RAP impulse train and then 
tested on the remaining instance of the RAP impulse train 
stimulus. This procedure was then repeated for all instances 
of the stimulus. Performance was measured as the percent of 
variance accounted for (VAF) by the model: � 

i (yi − ŷi )
2 

V AF  = 1 − � (1) 
i(yi − ȳ)2 

where yi is the experimental response and ŷi is the predicted 
response to the ith stimulus of the RAP impulse train and ȳ is 
the mean experimental response across all stimuli. The VAF 
in a given experiment was calculated as the median of the 
VAF across the set of test stimuli. To compare the Volterra 
and phenomenological models, the VAF was then averaged 
across experiments (N = 7). The model parameters displayed 
throughout the paper are the average across all test stimuli 
for a single experiment and then across all animals (N = 7). A 
VAF of 100% would indicate that the model prediction exactly 
matches the timeseries of the cortical response. However, due 
to noise in the biological signal, the variance that the models 

could realistically be expected to explain was bounded below 
100%. For instance, a single trial of the cortical response 
predicts ∼85% of the variance in the mean cortical response, 
indicating a degree of stochasticity that a deterministic model 
could not be expected to account for. However, each of the 
models is affected identically, such that the VAF measure can 
be used to compare the two models. 

Volterra model. The goal of this study was to identify 
the nonlinear system dynamics that govern the cortical 
response to patterns of electrical stimulation delivered to 
the thalamus. Traditionally, system identification has been 
performed using nonparametric black box methods, such as 
Volterra kernel estimation, which have a long history in 
neuroscience applications (for review see Marmarelis 2004, 
Wu et al 2006). A Volterra series model describes the nth 
order nonlinear dynamics of a system with input, r[n], and 
output, s[n], through a series of kernel functions, k0, k1, . . . , kn, 
according to the following equation: 

M−1 � 
r[n] = k0 + k1[m] · s[n − m] 

m=0 

M−1 M−1 � � 
+ k2[m1, m2] · s[n − m1] · s[n − m2] + · · ·  

m1=0 m2=0 

(2) 
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where M is the memory of system, indicating how far in the 
past that previous inputs will still affect the output, and mi 

represent each time index of the VSDI signal (5 ms), such 
that a memory of 100 timepoints corresponds to 500 ms. A 
diagram of the Volterra series model is shown in figure 3(b). 
Here we used a second order Volterra series that, with a 
memory of 100 timepoints, contained 5150 parameters. Many 
of these parameters were not important descriptors of the 
system dynamics, but this information was not available a 
priori. In this study the second order Volterra system was 
estimated according to the methods of Wu and Sclabassi 
(1997). Briefly, a set of RAP-kernels were orthogonalized with 
respect to the RAP stimulus, such that they could be identified 
through cross-correlation techniques. These RAP kernels were 
then mapped into the true Volterra kernels of the system. All 
kernels presented here are the true Volterra kernels. 

Extension to a third order Volterra system would require 
a prohibitively long data record due to the extremely large 
number of additional parameters it would require. There 
exist methods for parameterizing the Volterra kernels for 
more computationally and experimentally efficient estimation 
of higher order kernels. The most common approach in 
neuroscience applications uses Laguerre polynomials as basis 
functions for the kernels, providing support for high frequency 
content at short time lags and exponentially vanishing support 
at long time lags (Marmarelis 1993, Song et al 2009). However, 
these approximations are only useful if the chosen basis set can 
adequately represent the structure of the true Volterra kernels, 
which likely is not known a priori. These methods did not 
perform better than the cross-correlation based approach for 
our data set (data not shown), leading to the development of 
the phenomenological model. 

Phenomenological model. The phenomenological model 
used many fewer parameters by including specific elements 
into the model that were derived from experimental 
observations. First, the temporal structure of the VSDI 
response to a single electrical stimulus was not affected by 
the strength of the stimulus or the amplitude of the response, 
as shown in figure 2(a). In this way, the experimental system in 
figure 3(a), with input s[n] and output r[n], can be modeled as 
a nonlinear mapping of the discrete input followed by a linear 
filter to convert the discrete inputs to the continuously varying 
VSDI output. This is depicted in the top portion of figure 3(c), 
where the input, s[n], undergoes a nonlinear mapping to the 
intermediate variable, s [n], before passing through the linear 
filter to produce the output, r[n]. This simplification is common 
for systems classified as ‘same response shape’ systems, where 
only the amplitude of the response is affected by the discrete 
inputs and system dynamics (Krausz 1975, Sen et al 1996, 
Stern et al 2009). 

The model for the discrete nonlinear mapping was also 
derived from experimental observations. The system exhibited 
two different sets of nonlinear dynamics, as illustrated by 
figure 2(c). For the high current intensity in the left portion of 
figure 2(c), the response to the second stimulus was suppressed 
relative to the response to the first, and this suppression relaxed 
for long inter-stimulus intervals. For the low current intensity 

in the right portion of figure 2(c), the response to the second 
stimulus was strongly facilitated relative to the response to the 
first, but only for inter-stimulus intervals of 100–200 ms. 

These two sets of nonlinear dynamics were explicitly 
included into the structure of the phenomenological model 
as a cascade, shown in the middle portion of figure 3(c). This 
was done for two reasons. First, the separate dynamics outlined 
in figure 2(c) were each second order, indicating that the total 
order of nonlinearity in the system was at least third order. 
However, a serial cascade simplified the high order nonlinear 
system into two second order systems, each with a simpler 
description of the dynamics. Second, the cascade mirrors the 
multi-stage biology of the neural circuit between the thalamus 
and layer 2/3 of cortex. 

The architecture of the nonlinear mapping within each 
cascade was identical and is shown diagrammatically in 
the bottom portion of figure 3(c) as a canonical unit. The 
canonical model separated the static and dynamic nonlinearity 
within each stage. The static nonlinearity was modeled as a 
sigmoidal function, F , with input argument, x, and parameters, 
θ, according to (3) below and in line with the experimental 
observations in figure 2(b): 

θ1
F (x; θ) = � � (3)

−(x−θ2 )1 + exp 
θ3 

where θ1, θ2, and θ3 are the amplitude, threshold, and 
sensitivity of the sigmoid, respectively. The output of the 
canonical unit, y[n], was equal to the output of the sigmoidal 
function, F(x; θ). The dynamic nonlinearity was modeled 
through a history term, h[n], that scaled the input of the 
canonical unit, u[n], before the static nonlinearity, according 
to (4) below: 

y[n] = F(u[n] · h[n]; θ) (4) 

In this way, the history term modified how the static 
nonlinearity acted on the input, such that when the history 
term was greater than one, the output was facilitated, and when 
the history term was less than one, the output was suppressed. 
The history term in the standard phenomenological model was 
generated using feedback according to (5): 

M−1 � 
h[n + 1] = 1 + k[m] · y[n − m]  (5)  

m=0 

where y[n − m] gives the previous outputs within the memory, 
M, of the canonical unit, and k[m] is a linear filter. The 
convolution between the previous output and the linear filter 
was zero when there were no previous outputs within the 
memory of the system. For this reason, a value of one was 
added to the convolution such that the history term was equal 
to one when there had been no previous inputs or outputs for 
the system and thus had no scaling effect on future inputs. 
In this way, a positive result from the convolution creates a 
history term greater than one, leading to facilitation, and a 
negative result from the convolution produces a history term 
less than one, leading to suppression. 

The static and dynamic nonlinearity were separated to 
allow for a high order description of the static nonlinearity, 
while restricting the dynamic nonlinearity to second order. The 

6 



           

            
         

           
        

        
         

        
         

            
       

      
      

        
       

        
        

    
  

      
 

      
        

          
          

        
 

        
        

          
            

          
         
          

    
    

 
  

          
         

          
         

        
        

         
         

            
           

          

          
               

  

   

        
  

 

 
 

 
 

 
   

 

  
   

 

 
   

 

 
 

 
 

 
    

        
            
          

         
        

          
          

        
   

    
     

 
  

             
        

         
  

   

          
          

       
       
           

           
           

          
           
          
            
        
          

       

  

        
         

          
       

        
       

        
     

        
  

         
       

       
         

           

 

J. Neural Eng. 10 (2013) 066011 D C Millard et al 

output of the first canonical unit was the input to the second 
canonical unit. Finally, the output of the second canonical 
unit was passed through a linear filter to convert the delta 
functions into a continuously varying signal. The sigmoidal 
static nonlinearity functions had three parameters each, while 
the dynamical filters were parameterized through a basis set 
composed of the first five Laguerre polynomials (Marmarelis 
1993). The final linear filter that produced the characteristic 
shape of a VSDI signal had a basis set composed of the 
first eight Laguerre polynomials. Thus, the phenomenological 
model contained 24 parameters in total. 

The standard phenomenological model described above 
was compared with a feedforward implementation of the 
model. Whereas the phenomenological model with feedback 
used the previous responses to implement the dynamic 
nonlinearity, the feedforward model used the previous stimuli 
according to (6) below: 

M−1 � 
h[n + 1] = 1 + k[m] · u[n − m]. (6) 

m=0 

Otherwise, the two implementations of the phenomeno-
logical model were identical. The parameters were fit specif-
ically for the feedforward model. A diagram of the canonical 
unit for the feedforward architecture is shown in figure 7(d). 

2.5. Extension of the phenomenological model to include 
space 

The phenomenological model was extended spatially in an 
effort to model the entire spatiotemporal cortical response 
measured using VSDI. In this way, the cortical response was 
described by the set of r(i)[n], where i indicates the ith cortical 
column. The objective was to minimize the mean squared error 
between the neural response, r(i)[n], and the predicted neural 

(i)response, r̂ [n], with model parameters θ and across all i:
θ 

32 N �� � 2
arg min r(i)[n] − r̂(i)[n] . (7)

θ
θ 

i=1 n=1 

With 24 parameters required to fit a single instance of 
the phenomenological model, a total of 768 parameters would 
need to be estimated to fit the phenomenological model for 
each of the individual cortical column outputs. Instead, we 
employed a point spread function (PSF), A(x, y;ϕ), modeled 
as a two-dimensional Gaussian function that mapped the 
output of the phenomenological model into an image. The 
Gaussian function was defined by the parameters ϕ, where 
ϕ1 and ϕ2 determine the center of mass of the Gaussian in 
the two-dimensional image, ϕ3 and ϕ4 give the width of the 
Gaussian along the major and minor axis, respectively, and ϕ5 

represents the angular orientation of the major and minor axes 
with respect to the x and y axes of the image, and given by the 
following equation: 

2A(x, y;ϕ) = exp(−(a · (x − ϕ1 ) 

+ b · (x − ϕ1 ) · (y − ϕ2 ) + c · (y − ϕ2 )
2 )) (8) 

where 
cos(ϕ5 )

2 sin(ϕ5 )
2 

a = + (9)
2 · ϕ3

2 2 · ϕ4
2 

− sin(2 · ϕ5 )
2 sin(2 · ϕ5 )

2 

b = + (10)
4 · ϕ2 4 · ϕ2 

3 4 

sin(ϕ5 )
2 cos(ϕ5 )

2 

c = 
2 

+ 
2 

. (11)
2 · ϕ3 2 · ϕ4 

The PSF simplified the model in that the phenomenolog-
ical model only needed to be fit for a single cortical column 
and then the PSF determined the relative activation levels for 
all cortical columns. This reduced the number of required 
parameters to 29, with 24 corresponding to the phenomeno-
logical model of a single cortical column and 5 parameters 
for the PSF. Ultimately, the parameters for the model were 
determined using the following augmentation of the objective 
function in (7): 

32 N �� � 
(i) 2

arg min r(i)[n] − r̂ [n] · A(xi, yi;ϕ) (12)θϕ 
i=1 n=1 

where xi and yi are the coordinates for the center of the ith 
cortical column. The above optimization was performed for 
parameters θ and ϕ both serially and simultaneously with 
identical results. 

2.6. Model simulations 

The models were fit on input–output response data that have 
been averaged across trials and thus would only be expected 
to predict trial-averaged responses. However, to simulate 
single trial responses from the deterministic phenomenological 
model, Gaussian white noise was injected at the output of the 
first and second stages. The variance of the injected noise for 
the second stage was tuned to reproduce the variance of the 
background noise in the VSDI signal. The variance of the 
injected noise in the first stage was scaled according to the 
relative amplitudes of the static nonlinearity in the first and 
second stage, such that the noise inputs in the two stages were 
equally weighted. The simulations were performed with the 
standard feedback model presented in figures 3(c) and 4, and 
also the feedforward implementation of the model. 

3. Results 

In this study, we created a phenomenological nonlinear 
dynamical model of the cortical response to patterns of 
microstimulation in the thalamus. We compared this model to a 
nonparametric model fit with traditional system identification 
techniques and derived predictions about the circuit level 
activation caused by electrical microstimulation. Finally, we 
extended the phenomenological model to capture the spatial 
properties of the cortical response. 

3.1. The cortical response to thalamic microstimulation is 
highly nonlinear 

All experiments utilized in vivo VSDI of layer 2/3 in the  
whisker representation of the primary somatosensory cortex 
with electrical microstimulation delivered to the topologically 
matched VPm portion of the thalamus in the anesthetized 
rodent, as depicted in figure 1(a). For a detailed account of 
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Linear Filter First Stage Filter Second Stage Filter
(a) (b) (c)
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2 
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0.2% 

Actual Response 
Phenomenological 

* 
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* 
* 

(d) 

(e) *Actual Response 
Second Order Volterra * 

* 
* 

Figure 4. Phenomenological model based on experimental observations accurately predicted the cortical response to patterned 
microstimulation. The average (a) linear kernel, (b) first stage feedback kernel, and (c) second stage feedback kernel of the phenomenological 
model fit on Poisson train stimuli and VSDI response data (N = 7). In each case, the first stage kernel implemented the facilitation dynamics 
and the second stage implemented the suppression dynamics. (d) An example of the performance of the phenomenological model (blue), 
with the actual response shown in black. (e) An example of the second order Volterra model performance (green), with the actual response 
shown in black. In (d) and (e), the height of the ticks indicates the current intensity and the asterisks mark stimuli for which the Volterra 
model severely under-predicted the response. The phenomenological model performed better for these responses. 

the methods, see Wang et al (2012). Briefly, post-experiment 
cytochrome oxidase staining revealed the anatomical structure 
of the cortical columns, with an example shown in figure 1(b). 
This anatomical map was registered to the VSDI recordings 
using functional measurements in response to the deflections of 
multiple whiskers individually, as in figure 1(c) (see section 2). 
The spatiotemporal VSDI response to electrical stimulation is 
shown in figure 1(d), where the activation of cortex begins 
5–10 ms following thalamic microstimulation, and quickly 
grows in amplitude and spreads spatially. The electrical stimuli 
used in this study were symmetric, cathode-leading biphasic 
waveforms. Each stimulus is indicated by a ‘tick’ throughout 
the figures, where the height of the ‘tick’ indicates the current 
amplitude. 

For the purposes of this study, we averaged the VSDI 
response spatially within the area outlined by the cortical 
column topologically matched to the position of the electrode 
in thalamus, as verified by electrophysiological recordings. 
By averaging within the cortical column, we obtained a high 
signal to noise ratio for single trials, as shown in figure 2(a) 
where the gray traces are the single trials and the mean across 
trials is given by the black trace. The response in cortex over 
time exhibited a consistent trajectory for a wide range of 
stimulus intensities and response amplitudes. This is illustrated 

by the example in figure 2(a) by normalizing the response to 
three different supra-threshold current intensities, such that 
the temporal profile of activation was qualitatively similar 
across the stimulus range. While the temporal response shape 
was consistent, suggesting a simple linear filter as a model, 
the response amplitude demonstrated a nonlinear relationship 
with stimulus intensity. Figure 2(b) shows an example of 
the nonlinear relationship, which was well approximated by 
a sigmoidal function. This observation, along with previous 
literature, suggests a nonlinear projection from the thalamus 
to cortex for thalamic microstimulation. 

Pairs of electrical stimuli were then delivered to the 
thalamus with varying current intensity and varying inter-
stimulus interval to sample the dynamics of the system. 
Figure 2(c) shows the response to pairs of stimuli with high 
(left) and low (right) current amplitudes. For the high current 
intensity in the left portion of figure 2(c), the response to 
the second stimulus was suppressed relative to the response 
to the first, and this suppression relaxed for long inter-
stimulus intervals. For the low current intensity in right portion 
figure 2(c), the response to the second stimulus was strongly 
facilitated relative to the response to the first, but only for 
inter-stimulus intervals of 100–200 ms. This observation alone 
points to dynamics higher than second order. For a second 
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order system, the nonlinear contribution between two pairs 
of stimuli will have the same shape, with only the amplitude 
scaled by the stimulus intensity. Here two different sets of 
second order dynamics were observed: suppression for high 
current intensities and facilitation for low current intensities 
with an inter-stimulus interval between 100 and 200 ms. 

3.2. Development of a phenomenological model based on 
experimental observations 

We devised a phenomenological model using the experimental 
observations described above. Two stages with identical 
architecture were used in series, with each stage being a 
modified version of models used previously to study synaptic 
physiology (Sen et al 1996, Stern  et al 2009). The model 
is shown diagrammatically in figure 3(c) and the details 
are described in the methods section. Briefly, the model 
implemented a cascade approach with multiple elements in 
series. The initial portion of the model was a nonlinear 
mapping of the discrete stimulus, and the final portion of 
the model transforms the impulses from the stimulus into 
a continuous VSD signal. This separation was based on 
the observation that the VSDI temporal response exhibited 
a consistent shape for a wide range of current intensities 
and response amplitudes, as in figure 2(a). The nonlinear 
dynamical mapping contained two stages because of the two 
distinct sets of dynamics observed in the figure 2(c). Each 
stage consisted of a static nonlinearity, modeled as a sigmoid 
function as in figure 2(b), and a history term that scaled the 
input to the static nonlinearity (see section 2.4). The history 
term was created by feeding back the output from the static 
nonlinearity through a linear filter and adding one. In this 
way, the history term only scaled the input when previous 
stimuli had occurred within the memory of the system. The 
architecture was the same for the second stage of the model, 
with the output of the first stage being the input into the second. 

Each stage was initialized with the same linear feedback 
filter and all of the parameters were fit simultaneously. In 
every case, although not constrained to do so, the first stage 
filter captured the time course of the facilitative dynamics and 
the second stage captured the time course of the suppressive 
dynamics. The average linear filter, first stage dynamical filter, 
and second stage dynamical filter are shown in figures 4(a)– 
(c), respectively. The actual and predicted responses for an 
example train of stimuli are shown in figure 4(d), with 
the predicted response of the Volterra model presented in 
figure 4(e) for comparison purposes. The responses labeled 
with an asterisk illustrate typical examples of the primary 
improvement of the phenomenological model over the Volterra 
model. The Volterra model was not able to capture the 
facilitative dynamics causing significant under-predictions of 
the response, whereas these dynamics were explicitly built 
into the phenomenological model and resulted in fewer under-
prediction errors. The VAF by the phenomenological model 
was 58 ± 12% across animals, whereas the second order 
Volterra model accounted for 28 ± 18% of the variance in the 
cortical response. The improvement of the phenomenological 
model over the Volterra model was statistically significant (p = 
0.002, N = 7, two-sided paired Student’s t-test). 

3.3. Error residuals illustrate the improved performance of 
the phenomenological model 

The mechanism for the increased performance of the 
phenomenological model is illustrated by examining the 
residuals. In the top portion of figure 5, the error residuals 
from the Volterra model are presented. In figure 5(a), the actual 
response was plotted against the predicted response for each 
stimulus within the Poisson train. At low values of the actual 
response, the Volterra model consistently over-predicted the 
response, whereas at high values of actual response, the model 
under-predicted the response. The probability distribution of 
the errors was calculated by subtracting the actual from the 
predicted, as in the figure 5(a) inset and figure 5(b). The 
distribution has a non-zero median and heavy tails, especially 
towards under-prediction. By examining the heavy tails we can 
determine if there was a bias towards the model incorrectly 
predicting certain features of the stimulus. In comparing 
the prevalence of over-prediction versus under-prediction as 
a function of the inter-stimulus intervals in the stimulus, 
we found that the large errors made by the Volterra model 
were predominantly under-predictions for stimuli that occur 
within 50–200 ms of a previous stimulus. These particular 
errors indicate a failure of the Volterra model to account for 
the facilitation dynamics presented in the right portion of 
figure 2(c). The skewness of the error distribution was also used 
to quantify the bias of under-prediction versus over-prediction. 
The skewness of the error distribution was −0.77 ± 0.44, 
indicating a significantly heavy left tail for under-prediction 
(p = 0.003, N = 7, two-sided Student’s t-test). 

The error residuals for the phenomenological model are 
presented in the lower panels of figure 5. In figure 5(d), the 
residuals were closer to the unity line, but still exhibited 
trends of over-prediction for weak responses and under-
prediction for strong responses. However, the collapsed error 
distribution showed no systematic bias in the residuals toward 
over-prediction or under-prediction (figure 5(e)) and fewer 
large errors overall due to the increased VAF by the model. 
Furthermore, there was no systematic bias in the residuals 
as a function of inter-stimulus interval. The skewness of the 
error distribution was −0.02 ± 0.79, indicating a symmetric 
distribution, and was not statistically significant from a lack 
of skewness (p = 0.94, N = 7, two-sided Student’s t-test). 
Furthermore, the lack of skewness was statistically different 
from the skewness for the Volterra model (p = 0.05, N = 7, 
two-sided paired Student’s t-test). By including experimental 
observations explicitly in the phenomenological model, the 
predictive capabilities were significantly increased while using 
many fewer parameters. For the remainder of the study, only 
the phenomenological model was considered. 

3.4. Linear point spread function captures spatial spread in 
cortex 

The phenomenological model was extended to capture the 
spatial properties of the cortical response to patterns of 
thalamic microstimulation. In the previous sections, the VSDI 
signal was discretized according to the anatomical map of 
the cortical columns, and only the signal from the principal 
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Figure 5. Phenomenological model improved error residuals compared to the Volterra model. (a) Error residuals for the second order 
Volterra model fit via cross-correlation. Each data point is the response to a single stimulus in the RAP stimulus train. (b) The residual 
distribution had a heavy tail towards under-prediction. (c) The responses were systematically under-predicted for stimuli separated in time 
by 50–250 ms. (d) Error residuals for the phenomenological model. (e) The residual distribution shows few large errors (indicated by the 
gray regions) and no bias toward under-prediction or over-prediction. (f) The responses were not systematically under-predicted or 
over-predicted for any inter-stimulus intervals. 

cortical column was used to fit the phenomenological model. left portion of figure 6(c), with the actual cortical response 
The phenomenological model performed equally well for at the top and the PSF at the bottom. The white contour 
the principal cortical column and adjacent cortical columns. indicates the primary cortical column, the black contours 
However, fitting an instance of the model for each cortical demarcate the eight nearest neighbor cortical columns, and the 
column would require a large number of parameters, while gray contour represents the distant cortical column. Each point 
ignoring the correlation structure of the spatial cortical on the scatterplot in the right portion of figure 6(c) came from 
response. As a first order approximation, we appended a the peak cortical response to each stimulus in the RAP impulse 
point spread function (PSF), A(x, y; ϕ), to the output of train used to the fit the model, while the red lines represent 
the phenomenological model, as in figure 6(a), mapping a the relative response amplitudes defined by the PSF. For the 
scaled version of the timeseries response from the principal entire range of cortical responses, and for adjacent cortical 
cortical column to the entire set of cortical columns within columns near and far, the linear approximation of the relative 
the barrel cortex. The details of the PSF are described in the response magnitudes in the primary and adjacent cortical 
methods. Briefly, the PSF was modeled as a two-dimensional columns effectively captured the experimentally observed 
Gaussian function, with parameters ϕ describing the center of relationship for trial-averaged responses. 
mass, spread along the major and minor axis, and orientation 
with respect to the coordinate axis of the VSDI images. 3.5. Trial to trial variability and feedback 
The resulting PSF was identical whether fit simultaneously 

While the model described above was highly predictive, it iswith, or immediately following, the identification of the 
also purely deterministic, such that it will always predict thephenomenological model. 
same response for the same stimulus. In this way, it cannotFigure 6(b) presents an example of the actual and 
strictly reproduce the trial to trial variability in the corticalpredicted cortical response to a train of electrical stimuli 

for the principal cortical column (top, blue) and a distant response. Here we explore the ability of the model to account 

cortical column (bottom, red). The PSF function accurately for single trial response properties when noise is added to 

maps the output of the phenomenological model to each of the the system through simulation. While the model was only 

cortical columns. The total variance in the response accounted designed to accurately predict the mean cortical response to a 

for by the spatial model, across all cortical columns, was pattern of electrical stimuli, we will show that small changes in 

45 ± 8% (N = 7). The PSF linearly maps the output of the input can lead to large changes in the output experimentally 

the phenomenological model to the various cortical columns. and that the architecture of the model is ideally suited to capture 

To assess the validity of this assumption, we analyzed the these dynamics on a trial-by-trial basis. 

relative response of the primary and adjacent cortical column Two sets of nonlinear dynamics were observed in the 

for neighboring cortical columns (AW, black data points) and trial-averaged responses in figure 2(c), leading to the explicit 

a distant cortical column (DW, gray data points) in figure 6(c). inclusion of two stages in the model. Although the dynamics 
The relative locations of the cortical columns are shown in the tended to be either suppressive or facilitative, there existed 
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Spatial the ten paired pulse experiments, one data set showed weak 
facilitation and one showed no facilitation at all, while the 
remaining eight showed consistent and robust facilitation. 
For two of the ten paired stimulus experiments there was 
a systematic shift from suppressive responses to facilitative 
responses for the threshold current as the experiment went on; 
however, this trend was not observed in the other data sets. 

0.2% It should be noted that in these examples, sub-threshold and 
supra-threshold currents consistently produced facilitative and 
suppressive responses, respectively, throughout the duration 
of the experiment. This suggests that the threshold current 
amplitude is likely a function of the underlying brain state, 
which was not measured systematically in this study (see 
section 4). 

Examining the trial to trial variability of facilitation and 
suppression, it is clear that the covariance of the response to500 ms 
the first stimulus and the second stimulus changes dramatically (c) 
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Figure 6. Extension of phenomenological model captures spatial 
spread. (a) A linear PSF, modeled as a two-dimensional Gaussian, 
was used to extend the model spatially across all cortical columns. 
(b) The spatial extension to the model captured the dynamics for the 
principal cortical column as well as distant cortical columns. (c) A 
representative cortical response (top left) and the PSF (bottom left) 
were similar. In the scatter plot, the PSF (red) captures the relative 
response properties of the principal cortical column and adjacent 
cortical column for neighboring (black) and distant (gray) cortical 
columns. Each data point indicates the response to a single impulse 
within the RAP impulse train. Scale bars in (b) and (c) are 500 μm. 

a range of currents for which the occurrence of facilitation 
or suppression varied on a trial-by-trial basis. Figure 7(a) 
plots the single trial responses to an initial stimulus against 
the responses to a second stimulus delivered 150 ms later, 
with the different colors indicating varying current intensity 
and the unity line in gray. There are three clear clusters 
within this plot. At very low current intensities, no response 
to either stimulus was observed. For intermediate currents, 
the response to the second stimulus was facilitated relative to 
the first, creating a cluster in the upper left portion of the 
axes. At very high current intensities, the response to the 
second stimulus was suppressed relative to the first, creating a 
cluster in the lower right portion of the axes. Interestingly, 
for a select range of current intensities, the occurrence of 
facilitation and suppression varied on a trial-by-trial basis. 
The 60 μA current intensity in this example spanned the 
regime connecting the facilitation cluster (upper left) to the 
suppression cluster (lower right). Plotting the single trial 
data in this way creates a characteristic pattern, extending 
vertically from the origin to the facilitation cluster and then 
traversing across the unity line to the suppression cluster. 
This characteristic pattern was consistent across animals. Of 

depending on the location within the axes. For very small 
currents, the individual trials cluster around the origin and have 
little covariance, creating a circular cloud of points. This is also 
the case for the facilitative cluster in the top left (30 μA) and 
the suppressive cluster in the bottom right (80 μA). However, 
for the 40 μA stimulus, exhibiting roughly half facilitation and 
half suppression, there is a strong negative correlation between 
the response to the first stimulus and the response to the second 
stimulus. Figure 7(b) plots the covariance, σ1,2, between the 
first and second response as a function of current. For sub-
threshold and supra-threshold stimulus intensities, σ1,2 was 
small. For the threshold current, the responses to the first and 
second stimulus strongly co-varied, such that knowledge of 
the response to the first stimulus was a strong predictor of 
the magnitude of the response to the second stimulus. This 
phenomenon was consistent across animals, with the average 
data presented in figure 7(c). 

The high variability, σ1
2, of the response to a threshold 

stimulus and the strong covariance, σ1,2, of the response to 
a subsequent stimulus indicate the presence of a feedback 
element within the neural circuit. The phenomenological 
model presented in this study contains feedback elements to 
implement the dynamic nonlinearity of the response. Given 
this, we sought to determine if the phenomenological model, 
which was built entirely on averaged data, could reproduce 
single trial response properties. By injecting noise at the output 
of each stage in the model, the relationship in figure 7(a) was 
simulated and the covariance as a function of current was 
extracted. The average sub-threshold, threshold, and supra-
threshold σ1,2 are presented in figure 7(e), demonstrating that 
the phenomenological model can reproduce the strong negative 
covariance observed experimentally for the responses to 
two threshold stimuli. However, when the phenomenological 
model was re-fit using a feedforward architecture (illustrated 
in the bottom-right portion of figure 7(d) and described in 
the methods), the negative covariance at the threshold current 
intensity was not observed (figure 7(f)). The feedforward 
model was implemented in a two-stage architecture in the same 
way as the feedback model described in the previous sections. 
Only the structure of the canonical units was different, with 
the feedforward model using the previous inputs to the system 
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Figure 7. Phenomenological model with feedback reproduced single trial variability in facilitation and suppression. (a) The response to the 
second stimulus (ISI = 150 ms) is plotted against the response to the first stimulus for experimental data. The color of each point indicates 
the current intensity in units of μA. The unity line is shown in gray. (b) The trial-by-trial covariance in the response to the two stimuli was 
calculated for each stimulus intensity. At sub-threshold and supra-threshold currents, the covariance between the first and second response 
was low. At a threshold current, there was a strong negative covariance between the first and second response. (c) The negative covariance at 
the threshold current was consistent across animals. (d) The phenomenological model was used to simulate an identical experiment. The 
simulated data was created by injecting noise into the model at the output of the first and second stages during presentation of stimuli. A 
feedback model (same as in figure 5, displayed in bottom-left of the panel) and a feedforward model (fit specifically for this analysis, 
displayed in the bottom-right of the panel) were used. Both models utilized a two-stage model architecture, where each stage consisted of a 
canonical unit. The canonical unit for the feedback (left) and feedforward (right) model are shown in this panel. (e) The feedback model 
reproduced the strong negative covariance at the threshold current and recovers for supra-threshold currents, and was not significantly 
different from the experimental data in (c) (p = 0.89, N = 7, two-sided paired Student’s t-test). (f) The feedforward model did not reproduce 
the negative covariance for threshold currents, and the difference from the experimental data was statistically significant (p = 0.003, N = 7, 
two-sided paired Student’s t-test). 

to model the dynamics, as opposed to the feedback model that 
uses previous outputs to model the dynamics. 

These simulations indicate that the feedback architecture 
within the model is important for producing the experimentally 
observed trial-by-trial variability. However, the result could 
also be due to the specific parameters fit in the feedback and 
feedforward cases. As a control, the dynamical filters and static 
nonlinearities from the feedforward model were implemented 
in the feedback architecture and the strong covariance, σ1,2, 
was still not reproduced (data not shown). Vice versa, when 
the parameters from the feedback model were implemented 
in the feedforward architecture, half of the covariance was 
recovered as compared to the feedback model. This indicates 
that feedback is necessary, but not sufficient, for creating the 
covariance observed experimentally, pointing toward a role for 
either the static nonlinearities or the dynamical filters. 

3.6. Activity propagation through electrical microstimulation 

The dynamical filters did not vary significantly across the 
feedforward and feedback models in the first or second stage, 
as shown in figures 8(a) and (b), respectively, nor did the 

overall static nonlinearity differ in figure 8(c). But, while the 
overall static nonlinearities were similar, the individual static 
nonlinearities within each of the two stages were dramatically 
different. For the first stage, shown in figure 8(d), the feedback 
model was very insensitive to the current of the input, 
modeled as a sigmoid function elongated along the horizontal, 
whereas the feedforward model was moderately sensitive. 
In the second stage, depicted in figure 8(e), the feedback 
model was highly sensitive to current intensity, modeled as 
a sigmoid function compressed along the horizontal, whereas 
the feedforward model was again moderately sensitive. These 
model parameters were consistent across animals, as shown in 
figure 8(f). 

Due to the high sensitivity of the second stage in the 
feedback model, small perturbations from the noise caused 
large changes in the output of the model near the threshold 

2current leading to a high response variability, σ1 . Meanwhile, 
the highly variable response was fed back into the model 
and augmented the response to subsequent stimuli resulting 
in a high σ1,2 value. The moderately sensitive stages of the 
feedforward model were more robust to noise and thus did 
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Figure 8. Model parameters predict linear local response properties, but nonlinear propagation of activity. (a) The average first stage kernel 
from the phenomenological model fit with feedback (red) and feedforward (blue) dynamics. (b) The average second stage kernel. (c) An 
example of the full static nonlinearity created by combining both stages. (d), (e) The static nonlinearity at the first and second stages, 
respectively, for the feedback and feedforward models. (f) The average sensitivity across animals (N = 7) is distinctly different for the 
feedback and feedforward models. The feedback model was weakly sensitive in the first stage and highly sensitive in the second stage. The 
feedforward model was moderately sensitive in both stages. 

not exhibit high σ 2 at the threshold current, and without1 
feedback the model could not account for σ1,2. In summary, 
the relative sensitivity in the static nonlinearity of each stage 
dramatically alters the propagation of activation through a 
cascade system with feedback. Meanwhile, the similarity of 
the phenomenological model architecture and the anatomy 
and physiology of the thalamocortical circuit maps the results 
of this section to general predictions about information 
propagation in neural circuits (see section 4). 

4. Discussion 

Here we have demonstrated a phenomenological model 
capable of predicting the response of the thalamocortical 
circuit to temporal patterns of thalamic stimulation in vivo. 
By explicitly including nonlinear elements modeled after 
experimental observations, such as the combination of 
facilitative and suppressive dynamics, into the model 
architecture, we significantly increased performance with 
respect to the Volterra series model architecture while using 
many fewer parameters. Additionally, although the model was 
fit using trial-averaged data, it was able to reproduce single 
trial response properties observed experimentally, lending 
credence to the physiological significance of the model 
architecture. Finally, from these single trial simulations, we 
predict that electrical microstimulation activates neurons in 
its local environment through linear recruitment, but that 
this activity propagates to downstream structures in a highly 
nonlinear manner. 

The models in this study were fit using input–output data 
from the thalamocortical circuit. The input was a train of 

symmetric biphasic electrical stimuli, Poisson-distributed in 
time and uniformly varying in amplitude, while the output 
was the spatially averaged cortical response as measured by 
voltage sensitive dye imaging. Due to the light scattering 
of the tissue, VSDI principally measures the activity in the 
superficial layers of cortex (Grinvald et al 1994). The change 
in fluorescence of the voltage sensitive dye increases linearly 
as a function of membrane potential, but the imaging of the 
signal is too slow to resolve individual action potentials, 
restricting the interpretation of the signal to sub-threshold 
activation (Grinvald and Hildesheim 2004). Even though the 
absolute amplitude of the VSDI response in layer 2/3, and the 
related probability of action potential generation, is known to 
be strongly modulated by brain state (Petersen and Crochet 
2013), the spatial distribution of sub-threshold activation in 
layer 2/3 during the onset of activation is likely highly 
correlated with the supra-threshold activity in layer 4 of cortex 
(Petersen et al 2003a). All details considered, VSDI provides 
a high resolution spatial and temporal measure of the cortical 
response. 

Both models were fit using the same input–output data, 
but the philosophy and architecture of each was very different. 
The Volterra model is an example of a black box model, which 
requires little previous information about the system due to 
its flexibility, making it an ideal starting point for system 
modeling. The incredible flexibility of a black box model, 
however, requires a large number of parameters, and it is 
difficult to determine which will be important a priori. Also,  
in order to fit a large number of parameters, a large amount 
of data is needed. For these reasons, we explicitly included 
certain elements into the phenomenological model, increasing 
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the order of nonlinearity in the model to a degree greater than 
could be estimated with a Volterra series given the data and 
time limitations. By effectively fitting the model with small 
amounts of data, we open the possibility of pseudo real time 
model construction and experimentation and potentially avoid 
the slow timescale non-stationarities that may exist in an in vivo 
anesthetized biological preparation. 

The structure of the phenomenological model invites 
physiological interpretations due to its unique structure. The 
observation of two distinct second order dynamics motivated 
the two-stage architecture. Two sets of second order dynamics 
in series would imply that a fourth order Volterra series 
may have captured the dynamics of the system. However, 
the intentional separation of the dynamics into two stages 
allowed the dynamics to be described in a simpler form. 
From this, we would hypothesize that the distinct dynamics 
are carried out by different elements of the neural circuit, 
and further that these elements may be acting in series. The 
model parameters consistently show the facilitation dynamics 
occurring in the first stage, while the second stage employs 
the suppression dynamics. As the two-stage model mirrors 
the disynaptic pathway from the thalamus to layer 2/3 of  
cortex, the model would predict that the facilitation dynamics 
occur upstream of the suppression dynamics within the neural 
circuitry. The suppression dynamics can likely be accounted 
for by recurrent inhibition within the cortex (Kara et al 
2002), and the long timescale of inhibition implicates the 
involvement of GABA-B receptors (Butovas et al 2006). 
With facilitation occurring before suppression in the model, 
we speculate that the facilitation is sub-cortical in origin. 
This is in agreement with literature describing the facilitation 
of successive stimuli termed the thalamocortical augmenting 
response, which acts through thalamic and cortical structures 
(Dempsey and Morison 1943, Castro-Alamancos and Connors 
1996, Bazhenov et al 1998). The timescale of facilitation is also 
consistent with the timescale of calcium T-channel mediated 
bursts in the thalamus (Lu et al 1992). 

A separate static nonlinearity was included within each 
stage of the model as well and might be interpreted as the 
transformation across synapses within the thalamocortical 
circuit. In this way, the static nonlinearity of the first 
stage would represent the transformation of electrical current 
into the number of activated thalamic cells. Similarly, the 
static nonlinearity of the second stage would represent the 
transformation of the number of activated thalamic cells to 
the number of activated cortical cells. While feedback within 
the model was found to contribute to the single trial response 
properties, it was the relative sensitivities of the first and 
second stage static nonlinearities that were most important. 
Specifically, the first stage was found to be linear with respect 
to current intensity and exhibit a shallow slope, such that small 
amounts of noise produced small fluctuations in the output of 
the first stage. This leads to the prediction that the number 
of neurons activated in the immediate environment around 
the electrode are recruited in a nearly linear relationship with 
the stimulus intensity, and that this recruitment is robust to 
random fluctuations in membrane potential of the neurons. 
This interpretation is supported biophysically in that the radius 

of activation from the electrode tip increases as the square root 
of the current intensity, while the number of neurons within 
that sphere increases with the cube of the radius, leading to a 
weakly nonlinear relationship between the number of neurons 
activated and the current intensity (Tehovnik et al 2006). 
Further, when stimulating a fiber bundle, the relationship 
between current intensity and the number of axons activated 
becomes linear (Yeomans 1990). Recent work is also in 
agreement, as Histed et al (2009) report a linear increase in 
the number of cells activated by increasing microstimulation 
intensity as measured by calcium imaging of the cortical 
population. 

Meanwhile, the output of the second stage, or number 
of cortical cells activated, was found to be quite sensitive 
to the output of the first stage, which is interpreted as the 
number of activated thalamic cells. We hypothesize that the 
cortical activation is highly sensitive to the number of activated 
thalamic cells due to the high convergence and divergence 
of the thalamocortical circuit (Sherman and Guillery 1996) 
and the extreme synchrony with which electrical stimulation 
recruits the thalamic neurons (Wagenaar et al 2005, Sekirnjak 
et al 2008). This is supported by previous work demonstrating 
that synchronous activation of thalamic neurons drives 
downstream neural activation in a highly nonlinear manner 
(Alonso et al 1996). The nonlinearity discussed above 
refers to the static nonlinear relationship between the neural 
response and the stimulus intensity; however, we believe this 
phenomenon extends to the dynamic nonlinearity. The extreme 
synchrony of the activation caused by electrical stimulation 
may explain how electrical stimulation and natural sensory 
stimulation could recruit distinct nonlinear responses (Masse 
and Cook 2010). 

This hypothesis applies directly to the implementation of 
sensory prostheses, the goal of which is to transduce signals 
from the sensory environment into patterns of stimulation 
that create surrogate sensory signals in the peripheral or 
central nervous system. Ideally a sensory neuroprosthesis 
would generate neural responses similar to those created 
by natural stimuli; however, this may prove problematic if 
electrical microstimulation engages circuits in a fundamentally 
different manner as compared to natural stimuli. Given this, 
some degree of plasticity, ranging from interpreting unnatural 
patterns of electrical stimulation (Fitzsimmons et al 2007) 
to grasping new coordinate transformations with cross-modal 
sensory substitution (Bach-y-Rita et al 1969, Barros  et al 
2010), will be required for the successful implementation of 
a sensory prosthesis. At a minimum, a sensory prosthesis 
must be capable of producing perceptually distinct neural 
activations that the patient could learn to interpret functionally. 
This motivates the mapping of electrical stimuli to downstream 
neural responses, such that patterns of stimuli can be designed, 
in real time, with the high spatial resolution and fast timescales 
that will be needed in the limit of faithfully representing the 
sensory experience (Gilja et al 2011). While implementation 
of this system identification approach may be possible in a 
human patient, the immediate impact lies in quantitatively 
describing the neural response generated by patterns of 
electrical stimulation within sensory pathways of the central 
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nervous system. The development of the cochlear implant 
followed a similar trajectory, with many early animal studies 
characterizing the encoding of electrical stimuli into neural 
activity (Merzenich et al 1973, Hartmann et al 1984) to aid  
in the development of encoding algorithms for early cochlear 
implants. This work forms an initial step in replicating the 
cochlear implant development trajectory in the central nervous 
system. 

In addition to the system identification approaches 
described here, future inclusion of both recording and 
stimulating electrodes in prosthetic applications will enable 
control-theoretic approaches to optimize and control the neural 
activation, and resulting percept, induced by surrogate sensory 
signals (Liu et al 2011, Daly  et al 2012). In order to operate 
in real-time, the model must contain a description of the 
stochasticity of the system. While the model presented in this 
study reproduces single trial response properties, it lacks the 
ability to predict single trial responses. A feedback signal, 
such as the electroencephalogram or local field potential, 
would be needed to determine the instantaneous state of 
the circuit for improving single-trial predictions (Brugger 
et al 2011), in so far as the stochasticity in the single trial 
responses derive from an underlying state variable (Petersen 
et al 2003b). Additionally, the underlying uncertainty could 
be built directly into the model parameters in the context of a 
robust control framework. Importantly, the pathological circuit 
may function differently from normal (Davis et al 1998), 
further emphasizing the importance of closed loop stimulation 
and recording paradigms. 

Precise delivery of information to the brain requires 
control of the spatial and temporal properties of neural 
activation. In this study, we modeled the spatial cortical 
response through a linear PSF. This simple, linear spatial 
model performed nearly as well for the entire barrel cortex 
as the non-spatial phenomenological model did for a single 
cortical column, indicating the PSF is a good approximation of 
the spatial cortical response. This conclusion is consistent with 
previous studies that coined the term ‘cortical PSF’, referring 
to the region of cortical space activated by a point source 
stimulus (Grinvald et al 1994, Das and Gilbert 1995). The 
PSF was effective and efficient in our modeling study, yet a 
significant portion of the variance in the spatial signal remained 
unexplained. Future work is needed to determine if the spatial 
and temporal response properties in cortex are separable or co-
dependent in order to control the cortical response with high 
spatial and temporal resolution. There exists some evidence 
from the literature the patterned stimuli can dynamically 
shape the spatial properties of the cortical response. Brumberg 
et al (1996) demonstrate a spatial sharpening of the cortical 
response in the barrel cortex to a single whisker deflection 
when a noise stimulus is applied to the adjacent whiskers. 
More generally, adapting stimuli are thought to dynamically 
shape the cortical response, and have been shown to increase 
spatial acuity in a two-point discrimination task in humans 
(Tannan et al 2006). While space-time separability allows for 
simpler modeling of the cortical response, co-dependence, 
if fully understood, could enable complex shaping of the 
spatiotemporal cortical response and consequent perception. 

In this study, through the use of system identification 
techniques, we have developed a highly predictive 
phenomenological model of the cortical response to patterns of 
thalamic microstimulation. Simulations suggest that electrical 
stimulation may recruit neighboring neurons in a linear 
manner, but that the resulting activity projects to downstream 
structures through a highly nonlinear relationship. Future 
work will extend to a spatiotemporal model of the cortical 
response and the application of the model as a stimulus 
design tool for controlling the cortical response. More 
generally, this framework describes the nonlinear mapping 
from electrical stimulation to neural response in order to 
transform environmental cues into surrogate sensory signals at 
high spatial resolution and fast timescales for the advancement 
of central nervous system sensory prostheses. 
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