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First published March 18, 2015; doi:10.1152/jn.00978.2014.—One em-
bodiment of context-dependent sensory processing is bottom-up ad-
aptation, where persistent stimuli decrease neuronal firing rate over 
hundreds of milliseconds. Adaptation is not, however, simply the 
fatigue of the sensory pathway, but shapes the information flow and 
selectivity to stimulus features. Adaptation enhances spatial discrim-
inability (distinguishing stimulus location) while degrading detect-
ability (reporting presence of the stimulus), for both the ideal observer 
of the cortex and awake, behaving animals. However, how the 
dynamics of the adaptation shape the cortical response and this 
detection and discrimination tradeoff is unknown, as is to what degree 
this phenomenon occurs on a continuum as opposed to a switching of 
processing modes. Using voltage-sensitive dye imaging in anesthe-
tized rats to capture the temporal and spatial characteristics of the 
cortical response to tactile inputs, we showed that the suppression of 
the cortical response, in both magnitude and spatial spread, is contin-
uously modulated by the increasing amount of energy in the adapting 
stimulus, which is nonuniquely determined by its frequency and 
velocity. Single-trial ideal observer analysis demonstrated a tradeoff 
between detectability and spatial discriminability up to a moderate 
amount of adaptation, which corresponds to the frequency range in 
natural whisking. This was accompanied by a decrease in both 
detectability and discriminability with high-energy adaptation, which 
indicates a more complex coupling between detection and discrimi-
nation than a simple switching of modes. Taken together, the results 
suggest that adaptation operates on a continuum and modulates the 
tradeoff between detectability and discriminability that has implica-
tions for information processing in ethological contexts. 

sensory adaptation; sensory information coding; detection and dis-
crimination; voltage-sensitive dye imaging; vibrissa pathway 

WE LIVE IN A COMPLEX SENSORY environment, where different 
sensory cues are important for perception and decision-making 
in different contexts. Not only is there evidence for different 
information being parsed into different pathways (Goodale and 
Milner 1992), sensory information processing within a path-
way may also be context dependent, where competing coding 
schemes coexist (Crick 1984; Sherman 2001a). Specifically, 
sensory pathways may switch from conveying information for 
detecting novel features in the environment, to conveying 
information for discerning fine details (Adibi et al. 2013; 
Lesica et al. 2006; Lesica and Stanley 2004; Moore 2004; 
Sherman 2001b; Wang et al. 2010), setting the stage for a 
complex and dynamic coding scheme that may be particularly 
important for interacting with the natural environment (Stanley 
2013). 

Address for reprint requests and other correspondence: G. B. Stanley, 
Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology & 
Emory Univ., 313 Ferst Dr., Atlanta, GA 30332 (e-mail: garrett.stanley@bme. 
gatech.edu). 

One mechanism that modulates sensory information pro-
cessing is adaptation, a ubiquitous and cross-modal phenome-
non where the pathway shifts its dynamic range in response to 
persistent external stimuli, resulting in both perceptual and 
electrophysiological manifestations. Adaptation can occur on a 
variety of time scales and at different stages of the sensory 
pathway. We focus on rapid adaptation in the cortex on the 
time scale of hundreds of milliseconds. During rapid adapta-
tion, neurons decrease firing rate in response to repeated 
stimuli in hundreds of milliseconds and recover on a similar 
time scale (Webber and Stanley 2006). It has long been posited 
that adaptation is not simply fatigue of the neural system, but 
changes how information is encoded, processed, and eventu-
ally extracted (Ahissar et al. 2000; Chung et al. 2002; Clifford 
et al. 2007; Ego-Stengel et al. 2005; Fairhall et al. 2001; Higley 
and Contreras 2006; Khatri et al. 2009; Maravall et al. 2007; 
Wang et al. 2010). In somatosensation, psychophysical studies 
have shown that adaptation heightens spatial acuity in tactile 
discrimination tasks (Goble and Hollins 1993; Tannan et al. 
2006; Vierck and Jones 1970), while electrophysiological stud-
ies qualitatively show a spatially constrained cortical represen-
tation of repetitive stimuli, proposed as a potential mechanism 
for enhanced acuity (Lee and Whitsel 1992; Moore 2004; 
Sheth et al. 1998; von Bekesy 1967). Despite the potentially 
profound implications for sensory coding, however, this phe-
nomenon has not been extensively quantified. 

Analogous to the spatial acuity enhancement observed in 
humans, we recently demonstrated that both awake rats and the 
ideal observer of the cortex can better discriminate the spatial 
location of a whisker stimulus (i.e., which one of two adjacent 
whiskers was deflected) following sensory adaptation. How-
ever, the detectability (i.e., the probability that the animal 
reports the sensation of a whisker deflection or the probability 
that the ideal observer classifies the trial as a detected signal as 
opposed to noise) is degraded at the same time, suggesting a 
fundamental change in spatial acuity that has implications for 
texture processing (Ollerenshaw et al. 2014). Although a range 
of electrophysiological studies have demonstrated the effects 
of adaptation on cortical activation in the rodent vibrissa 
pathway (Adibi et al. 2013; Boloori and Stanley 2006; Chung 
et al. 2002; Ganmor et al. 2010; Higley and Contreras 2007; 
Khatri et al. 2004, 2009; Moore 2004; Sheth et al. 1998; 
Webber and Stanley 2004), the extent to which the nature of 
the adapting stimulus shapes the spatial activation in the cortex 
is unknown, as is the ultimate effect on detectability and 
discriminability. 

We used voltage-sensitive dye (VSD) imaging to measure 
cortical activation in the anesthetized rat and explicitly tested 
spatially distributed primary sensory cortex (S1) vibrissa rep-
resentations for a range of adapting stimuli. The VSD imaging 
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enables simultaneous recording from multiple cortical columns 
to capture the spatially distributed representation, while pos-
sessing the temporal characteristics requisite for capturing the 
transient temporal dynamics of the cortical response. We 
specifically modulated the energy in the adapting stimulus 
through covariation of the frequency and velocity, two primary 
parameters comprising the kinetic signature (Arabzadeh et al. 
2005) of whisker motion in whisking behavior and texture 
contact (Wolfe et al. 2008). Increasing amounts of adaptation 
resulted in cortical representations that were increasingly de-
graded in the overall activation and constrained spatially. 
Single-trial-based ideal observer analysis revealed a decrease 
in detectability of the whisker input with increasing adaptation 
and an increase in spatial discriminability for moderate levels 
of adaptation but degraded discriminability for more extreme 
levels of adaptation. Taken together, the results suggest that 
adaptation operates on a continuum and modulates the tradeoff 
between detectability and discriminability in an ethologically 
relevant way that emphasizes the competing demands that 
different tasks place on the system. 

MATERIALS AND METHODS 

Using VSD imaging in anesthetized rat barrel cortex, we analyzed 
the effect of sensory adaptation on the detectability and spatial 
discriminability of adjacent whisker stimulation on single-trial basis. 
As illustrated in Fig. 1A, in the rat vibrissa system, each vibrissa 
uniquely evokes the strongest response in its corresponding column 
(primary barrel) in the S1, and the vibrissae topographically align with 
the cortical columns. We used computer-controlled piezo-electric 
actuators to deflect the facial vibrissae of anesthetized rats, while 
recording the activation of a large population of neurons in cortical 
layer 2/3 using VSD imaging (Wang et al. 2012). Figure 1B illustrates 
the experimental setup, and Fig. 1C shows an example of the cortical 
response to a punctate deflection of a single vibrissa over time. The 
approximate map of cortical columns was functionally registered onto 
the image, as previously described (Wang et al. 2012; see Barrel 
Mapping below). The stimulus in this example was a punctate deflec-
tion of 1,200°/s in the rostral-caudal plane (exponential rise and 
decay). All responses across all stimulus conditions were time-aver-
aged from signal onset to peak (10–25 ms poststimulus) for further 
analyses (see Data Analysis and DISCUSSION below). We then per-
formed ideal observer analysis and classified each single trial based on 
fluorescence signals in the primary and adjacent barrels. 

Surgery 

All procedures were approved by Institutional Animal Care and 
Use Committee at Georgia Institute of Technology and in agreement 
with the National Institutes of Health guidelines. Seven female albino 
rats (Sprague-Dawley; 250–330 g) were sedated with 4% vaporized 
isoflurane, then anesthetized with pentobarbital sodium (50 mg/kg ip, 
initial dose). Supplemental doses were administered as needed to 
maintain a surgical level of anesthesia, confirmed by monitoring heart 
rate, respiration and eyelid/pedal reflexes to adverse stimuli (toe or tail 
pinch). Following the initial pentobarbital sodium dose, the animal 
was mounted on a stereotaxic device (Kopf Instruments, Tujunga, 
CA) on a vibration isolation table. Atropine (0.09 mg/kg sc) was 
administered subcutaneously to keep the lungs clear of fluid. Lido-
caine was injected subcutaneously into the scalp before the initial 
incision on the head. In all experiments, saline was administered (2 
ml·kg�1·h�1) to prevent dehydration. Body temperature was main-
tained at 37°C by a servo-controlled heating blanket (FHC, Bow-
doinham, ME). After the midline incision on the head, skin and 

tissue were resected, and connective tissue was removed. A cra-
niotomy (�3 mm  � 4 mm) was drilled on the left hemisphere over 
the S1 (stereotaxic coordinates: 0 – 4.0 mm caudal to the bregma, 
and 4.0 –7.0 mm lateral to the midline; Paxinos and Watson 2007). 
The dura was left intact. A dental acrylic dam was constructed 
around the craniotomy. At the end of the surgical procedures, a 
light level of anesthesia was maintained with pentobarbital sodium. 
The animal was euthanized with an overdose of pentobarbital 
sodium solution after VSD imaging. 

Staining 

The dura was cleaned using a gentle flow of saline (0.9%), then 
dried with a gentle air blow for about 10–15 min or until it appeared 
“glassy” (Lippert et al. 2007). VSD (VSD RH1691, Optical Imaging) 
was diluted in saline to �1.5 mg/ml. The dye solution (�200 �l) was 
carefully placed into the dam using a micropipette. The craniotomy 
was covered to prevent the dye from photo-bleaching. The dye 
solution in the dam was circulated and replenished with fresh dye 
solution every 5–10 min (Lippert et al. 2007). After �2 h of staining, 
the unbound dye was washed out with saline. Saline was applied to the 
brain surface after washing. Imaging was performed through saline on 
the brain surface. Saline was replenished throughout the experiment. 

Optical Imaging 

The excitation light source was a 150-W halogen lamp filtered at 
621–643 nm. The fluorescence signals were collected with a Mi-
Cam02 camera system (BrainVision). The camera was focused onto 
layer 2/3, at �300 �m below the pia surface (Petersen et al. 2003a). 
The frame was 184 � 123 pixels, at 200 Hz (frame rate � 5 ms). Prior 
to each trial, a background image of the craniotomy (F0) was re-
corded. The objective lens was 1� and the condenser lens was 0.63�. 
The magnification was �1.6. The field of view was 3.5 mm � 2.3 
mm, and the pixel size was 18.9 �m � 18.9 �m. All individual frames 
of 25–50 single trials were recorded. 

Vibrissa Stimulation 

Vibrissa deflections were generated by a multilayered piezo-elec-
tric bending actuator (range of motion: 1 mm, bandwidth: 200 Hz; 
Polytec PI, Auburn, MA), which was calibrated using a photo-diode 
circuit, by determining the relationship between command voltage 
steps and the resulting deflection amplitudes and velocities. Calibra-
tion of the two stimulators was performed with a slotted infrared 
switch (QVA11134, Fairchild Semiconductor), analogous to the 
methods described in other studies (Andermann et al. 2004; Arabza-
deh et al. 2005). As the tip of the actuator interrupts the path of the 
infrared beam, the change in the output voltage of the optical switch 
is directly proportional to that of the tip displacement. The voltage 
change was then transformed to the corresponding actuator displace-
ment change using the linear relationship between small changes in 
beam occlusion and output voltage (also determined experimentally). 
The vibrissae were each inserted into a 4-cm section of a 20-�l glass 
pipette (inner diameter of �0.65 mm) fixed to the end of an actuator. 
The ends of the glass pipettes were then situated 10 mm from the face. 
Actuator inputs were controlled by a programmable, real-time com-
puter. 

Vibrissae were deflected with an exponentially rising (� � 2 ms) 
and decaying saw-tooth waveform of 17 ms in duration in the 
rostral-caudal plane. Each trial had 200 ms of prestimulus recording. 
Under the nonadapted condition, a single deflection, referred to as the 
test probe, was delivered to a single vibrissa. In adapted trials, the 
same probe was preceded immediately by an adapting stimulus train 
of 1,000 ms on the same vibrissa, with no additional time between the 
adapting train and the test probe. The same protocol described above 
was presented to an adjacent vibrissa in the next trial. In our labor-
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High SpeedA B CCD Camera 
E7 E6 E5 E4 E3 E2 E1 Condenserδ EmissionD6 D5 D4 D3 D2 D1    Filter γVibrissa 

C5 C4 C3 C2 C1Topography β Dichroic 
B4 B2B3 B1 Mirror 
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A4 A3 A2 A1 LightObjective filter 

Source 
Whisker Whisker 

2  1 Piezo 
Control 

E5 E4 E3 E2 E1 δE6 
E7 

D6 D5 D4 D3 D2 D1Cortical Barrel (S1) γ 
Topography C5 C4C3 C2 C1 

β 
B4B3B2 B1 

α 
A4 A3 A2 A1 

C 
Stimulus 5ms 10ms 15ms 20ms 25ms 100msOnset 

0 0.11mm .... 
% ΔF/F0 

D Average Primary Barrel 

Single-trial Primary Barrel 

Average Adjacent Barrel 

0.1 
% ΔF/F0 

Stimulus50 ms 

Fig. 1. Voltage-sensitive dye (VSD) imaging of the rat barrel cortex in vivo. A: the rat vibrissa pathway is a well-suited model for somatosensory processing, 
as the primary cortical columns (barrels) are topographically mapped to the whiskers on the snout. Each whisker deflection evokes the strongest response in its 
corresponding barrel (primary barrel). B: in the anesthetized rat, computer-controlled piezoelectric actuators stimulated the whiskers, while the VSD camera 
system simultaneously collected the fluorescence signal from layer 2/3 of the primary somatosensory cortex. C: an example response to a single punctate whisker 
deflection of 1,200°/s on whisker E3, averaged over 30 trials. Top of image corresponds to the medial side of the animal or row E; right side of the image 
corresponds to the posterior of the animal or arc 1. Upon the onset of the response at �10 ms poststimulus, the VSD signal was constrained in the primary 
barrel-related column, but quickly spread to adjacent columns, and peaked at�20–25 ms. An outline of the barrel map functionally registered using the responses 
to different whisker deflections was overlaid on the VSD images. �F/F0, change in the fluorescence relative to the background. D: the corresponding time course 
for the response shown in C. The adjacent barrel-related column was the E4 column. 
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atory’s previous study (Ollerenshaw et al. 2014), we varied the 
stimulus protocol in imaging experiments such that, for some animals, 
the adapting stimulus was delivered onto both whiskers at the same 
time, and for others onto a single whisker. We found no qualitative 
differences. Because of the physiological variations, the adjacent pair 
of vibrissae stimulated was not always the same pair across animals. 
Typically, our surgery technique allowed us to open the craniotomy 
centered around D2; barrels with good VSD staining and devoid of 
bleeding were chosen (for animal 1: E3 and E4; animal 2: D2 and D3; 
animal 3: E1 and E2; animal 4: C2 and C3; animals 5 and 6: C1 and  
C2; animal 7: D1 and D2). 

Each trial was 5,000 ms, and there was at least 3,800 ms of rest 
between the last deflection and the next trial. Stimulation protocols 
were presented in random order and repeated 25–50 times. Therefore, 
a test probe under the same adapting condition was separated from its 
next presentation by at least 120 s. The design to interleave adapting 
stimulus conditions controls for physiological state changes over time, 
such as those related to anesthesia and spontaneous cortical activity. 

The frequency of the adapting stimulus train was 4, 10, 20, or 40 
Hz, and the deflection velocity was 100, 500, 1200, 2500, or 3,500°/s. 
The total energy in the adapting stimulus was the square of whisker 
displacement integrated over time. To evoke a robust nonadapted 
response in each animal, the test probe ranged from 1,200°/s to 
3,500°/s among seven animals. 

Data Analysis 

All analyses of VSD data were conducted using Matlab (Math-
Works, Natick, MA). The analyses were based on the change in the 
fluorescence relative to the background, or �F/F0. Specifically, the 
VSD frames were divided by the background image F0 pixelwise. 
Additionally, to account for nonstationarities and physiological effects 
(cardiovascular and respiratory motions) in the images, a baseline 
frame was subtracted from all subsequent frames to form �F. For 
nonadapted trials and prestimulus frames, the baseline was the aver-
age of the first 50 ms of prestimulus frames. For adapted trials, 
the baseline was the first 50 ms immediately preceding the probe. The 
resulting frames were divided by the background F0, to produce the 
primary measure �F/F0. Note that we report this as a percent change. 
The response frames were time-averaged from the typical onset to 
peak frame of cortical response (10–25 ms poststimulus) for all 
stimulus conditions. Numerous studies have asserted that sensory 
detection can be modeled as temporal integration of the ongoing 
neural response (Carpenter 2004; Chen et al. 2008; Cook and Maun-
sell 2002; Fridman et al. 2010; Gold and Shadlen 2001, 2007; Huk 
and Shadlen 2005; Mazurek et al. 2003; Roitman and Shadlen 2002; 
Schall and Thompson 1999; Smith and Ratcliff 2004; Stüttgen and 
Schwarz 2010). Therefore, we integrated from a typical VSD signal 
onset time of 10 ms (consistent with the cortical response latency in 
this pathway), to a typical VSD signal peak time of 25 ms. The 
prestimulus frames within each nonadapted trial (150 ms preceding 
the first stimulus), excluding those used as the baseline, were also 
time-averaged every four frames. To normalize each dataset, the 
nonadapted response was trial-averaged and spatially-filtered (a 5 � 
5-pixel or �0.1 mm � 0.1 mm median, then a 5 � 5-pixel average 
spatial filter). The filtered image was then fitted a two-dimensional 
Gaussian function by the least squared error algorithm. All �F/F0 

pixel values were normalized to the amplitude of this Gaussian 
function for each vibrissa. We quantified the magnitude and area of 
the response for each adapting stimulus condition. The response for 
each stimulus condition was trial-averaged and spatially filtered as 
described above. To produce more accurate Gaussian fits, the filtered 
image was rotationally averaged, using the elliptical parameters pro-
duced by the nonadapted Gaussian fit, meaning they were centered 
around the same pixel and had the same major and minor axes ratio. 
A pixel value threshold (see Adaptation Intensity below) was applied 
to the image, then the least square algorithm was used to derive a 

two-dimensional Gaussian fit. The magnitude of the response was the 
amplitude of the Gaussian fit, and the area was represented by the 
pixels within 1 SD of the Gaussian center. 

Barrel Mapping 

The method for barrel mapping was adapted from our laboratory’s 
previous studies (Millard et al. 2013; Wang et al. 2012). A barrel map 
was obtained from cytochrome-c oxidase staining of one animal. The 
barrels were outlined in Neurolucida software (MBF Bioscience, 
Williston, VT). This barrel map serves as a generic template for all 
other animals. In previous studies, we have found the barrel map to be 
relatively well conserved across animals. For each animal, the initial 
VSD responses to several individual whisker deflections were super-
imposed to form a response map, as the initial responses are relatively 
constrained within the primary barrel (Petersen et al. 2003a). The 
template barrel map was then linearly scaled, translated, and/or 
rotated, so that the centroids of the responses to several individual 
whisker deflections and the geometric centers of the barrels produce 
minimal squared errors. 

Adaptation Intensity 

To quantify the extent of cortical adaptation for each stimulus 
condition, an adaptation intensity was defined as follows. First, we 
calculated the response ratio for a given stimulus condition, which is 
the total fluorescence in the trial-averaged adapted response divided 
by that in the trial-averaged nonadapted response. For each stimulus 
condition, the trial-averaged image was filtered with a 5 � 5 pixel 
(�0.1 mm � 0.1 mm) median then a 5 � 5 pixel average spatial filter. 
Total fluorescence was the sum of all pixels above the prestimulus 
noise threshold, defined as the mean 1 SD of all pixel values from 
the trial-averaged prestimulus frames. Adaptation intensity equals 1 
minus the response ratio, so that intuitively, the most intense adapta-
tion condition corresponds to an adaptation intensity of 1, while an 
adaptation intensity of 0 signifies nonadapted condition. 

Ideal Observer Analysis 

Response variables. For each animal, two regions of cortex were 
defined so that each highlighted the center of the response to the 
corresponding whisker stimulation. The region corresponding to whis-
ker 1 stimulation was referred to as region 1 and so on. For trials from 
whisker 1 stimulation, region 1 was the center of the cortical response 
to its primary whisker stimulation (hereon referred to as the primary 
region), and region 2 was the center of the cortical response to the 
adjacent whisker stimulation (hereon referred to as the adjacent 
region). For whisker 2 stimulation trials, region 2 was the primary 
region, and region 1 was the adjacent region (see Fig. 5A). To obtain 
the region for each whisker stimulation, the trial-averaged nonadapted 
response was spatially filtered with a 5 � 5 pixel (�0.1 mm � 0.1 
mm) median filter and a 5 � 5 pixel average filter, then fitted with a 
two-dimensional Gaussian function. The corresponding activation 
region was defined as the 98% height contour of the Gaussian fit. The 
two regions were non-overlapping and approximately the size of a 
cortical column (�300–500 �m in diameter; Bruno et al. 2003). Once 
defined, the two regions were applied to the unfiltered, single-trial 
frames. The average fluorescence within each region was defined as a 
response variable. 

Detection. The primary region response variable was defined as the 
decision variable (DV) for this analysis. For each stimulus condition, 
the DVs from all single trials were binned and fitted with a Gaussian 
probability function, referred to as the signal distribution. A prestimu-
lus noise distribution was formed by the DVs extracted from pre-
stimulus frames (150 ms preceding the first stimulus) in all non-
adapted trials, referred to as the noise distribution. From the perspec-
tive of an ideal observer of cortical activation, each single trial in the 
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signal distribution and noise distribution was classified as either signal 
or noise using the Likelihood Ratio Test (LRT). Given a single trial 
response variable R, the log ratio of the probability (P) that the 
response was a signal (S), P(S|R), to the probability that the response 
was noise (N), P(N|R), was used to classify the trial. A nonnegative 
log likelihood ratio classifies the trial as signal and otherwise noise. 
With an equal probability of signal and noise, Bayes’ rule expresses 
the log likelihood ratio as follows: 

P�S�R� 
ln � ln�P�R�S� � ln�P�R�N� (1)� �P�N�R� 

For normal distributions, this expression becomes 

� 
1
�R ��S�=�S 

�1 �R ��S� � 
1

ln��S �2 2 
1 1 

� �� �R ��n�=�n 
�1 �R ��n� � ln��n �� (2)

2 2 

where �s is the mean of the signal response variables, s is the 
covariance (variance in this one-dimensional variable case), and �n 

and n are the mean and covariance, respectively, of the noise 
response variables (Duda et al. 2001). The LRT is validated with the 
“leave-one-out” method, where a detection decision for a single trial 
is made based on the model (average and variance) calculated using 
the rest of the trials. The fraction of correctly classified trials was the 
final measure for detectability. The same noise distribution was used 
in all adapting conditions. To ensure the results were not sensitive to 
the choice of prestimulus time frames, we repeated the analysis using 
noise distributions derived from the time frame following the adapting 
stimulus. Briefly, for each adapting condition, we used the set of 
frames in the 25-ms period preceding the test probe (after the adapting 
stimulus) to form its own “adapted noise distribution.” Using adapted 
noise distributions for each corresponding adapted signal, the detec-
tion performance still showed a monotonic decrease with adaptation 
(see Fig. 4F). 

Discrimination. As the animal likely further distinguishes the 
stimulus features only after it is detected, only detectable trials were 
considered for discrimination analysis. The primary response variable 
of a single trial must be above the detection threshold, which was 
calculated from the noise distribution of each whisker stimulation data 
where the threshold value yielded the 10% false alarm rate observed 
in previous behavioral studies (Ollerenshaw et al. 2012; Stüttgen et al. 
2006; Stüttgen and Schwarz 2008). The noise distribution was formed 
as described in the detection analysis. The detection threshold is a 
value such that the probability of obtaining a prestimulus noise value 
above the threshold, thus resulting in a misclassification of noise as a 
signal (false alarm rate), is 10%. To ensure that the discrimination 
result does not solely depend on a particular level of detection 
threshold, we repeated the analysis for a range of assumed thresholds. 
Specifically, we performed the discrimination analysis with the 
threshold set to 0, 25, 50, 75, and 100% of the detection threshold. 
Regardless of the detection threshold value, including the 0% level, 
which essentially constituted no threshold, the discrimination result 
was qualitatively the same (see Fig. 6E). We repeated the analysis 
using noise distributions after the adapting stimulus. We derived 
detection thresholds specific to each adapting condition, using the 
adapted noise distributions described above (see Detection above). 
We again found that the discrimination performance was qualitatively 
similar (see Fig. 6F). 

As with all electrophysiological studies, the data are impaired by 
limited trials. The duration of data collection in an average VSD 
experiment is limited to �2 h, mainly due to photo-bleaching. Thus 
the number of trials for each stimulus condition is low. To rectify this, 

majority of data sets were normally distributed. We then fitted 
Gaussian probability functions to the merged data to obtain estimates 
of the parameters (mean, variance, and covariance). As the raw data 
are limited and noisy samples, we used unlimited samples from the 
fitted parametric model. 

In detail, for each stimulus condition, the adaptation intensity was 
calculated from its trial-averaged image. For each detected trial within 
that stimulus condition, the response variables in the two adjacent 
barrels, R (R1, R2), were extracted and normalized (see Data Analy-
sis). Because the responses from two adjacent whisker deflections 
were approximately symmetric, for each adaptation intensity, all 
primary and adjacent variables were designated as trials from whisker 
1 stimulation, duplicated with reversed primary and adjacent values, 
and designated as trials from whisker 2 stimulation. All response 
variables across seven animals (14 whisker deflections) with the same 
adaptation intensity were merged, and the mean � (�1, �2), standard 
deviation ( 1, 2) and covariance 12 were calculated. The centers 
of the response variable cluster, marked with black crosses (Fig. 5B), 
represent the trial-average responses � (�1, �2). The ellipses outline 
2 SDs. The eccentricity of the ellipse represents the noise correlation 
(Pearson correlation coefficient) between R1 and R2. 

Regression analysis was used to determine the relationship between 
these parameters and adaptation intensity, and to determine the sim-
plest and most appropriate perspective for the subsequent analyses. 
The difference between the primary and adjacent means, which 
determines the distance between the cluster centers, did not show any 
correlation with adaptation intensity (r � �0.17, P � 0.61, data not 
shown) or with the mean of the cluster (r � 0.46, P � 0.16, data not 
shown). Because the standard deviation of primary barrel variables is 
correlated with that of the adjacent barrel variables (r � 0.87, P � 
0.0005, see Fig. 6B), they are presented as a combined standard 

deviation, � 2 � 2� ⁄ 2. The combined standard deviation is1 2 
highly correlated with primary (r � 0.97, P � 0.0005) and adjacent 
(r � 0.97, P � 0.0005) standard deviation and the covariance (r � 
0.99, P � 0.0005). The noise correlation was defined as the ratio of 
the covariance to the product of the primary and adjacent standard 
deviations, which is the Pearson correlation coefficient between R1 

and R2. 
Trials (n � 1,000) were drawn from a two-dimensional Gaussian 

distribution with the parameter values indicated in Fig. 6, B and C. 
Because the distance between the cluster centers did not change with 
adaptation, the values shown here all used a typical value from the 
nonadapted state. Each single trial was then classified using the LRT. 
Similar to the detection analysis in Fig. 4, the direction of stronger 
adaptation on the map was determined by the decreasing combined 
standard deviation with adaptation intensity (for adaptation intensity 
and �1, r � �0.73, P � 0.011; for �1 and the combined standard 
deviation, r � 0.62, P � 0.043, data not shown). For the observed 
response R on a given trial, the log ratio of the probability that the 
response resulted from whisker 1 (W1) stimulation, P(W1|R), to the 
probability that the response resulted from whisker 2 (W2) stimula-
tion, P(W2|R), was used to classify the trial. A nonnegative log-
likelihood ratio classifies the trial as whisker 1 stimulation, and 
otherwise as whisker 2 stimulation. The likelihood ratio is: 

P�W1�R� 
ln � ln�P�R�W1� � ln�P�R�W2� (3)� �P�W2�R� 

For normal distributions, this expression becomes: 

� 
1
�R ��1�=�1 

�1 �R ��1� � 
1

ln��1 �2 2 
1 1 

� �� �R ��2�=�2 
�1 �R ��1� � ln��2 �� (4)

2 2 
all response variables from seven animals were normalized (see Data 
Analysis above), merged, and grouped according to their adaptation where �1 is the mean of the whisker 1 stimulation response vectors, 
intensity. We first tested normality on the data sets collected, and the 1 is the covariance matrix, and �2 and 2 are the mean and 
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covariance matrix, respectively, of the whisker 2 stimulation response 
vectors (Duda et al. 2001). The LRT is validated with the “leave-one-
out” method, and the fraction of correctly classified trials was the final 
measure for discriminability. Because the data satisfy the condition 
that, �1 

2
2 �2 1

2, the outcome of the LRT was directly determined 
by the unity line. That is, for whisker 1 deflection data points, any trial 
that is below the unity line would be correctly classified as whisker 1 
deflection, and any trial that is above the unity line (meaning the 
adjacent barrel fluorescence is greater than the primary barrel value) 
would be misclassified as whisker 2 deflection. 

RESULTS 

To investigate how the dynamics of sensory adaptation 
mediate the spatiotemporal activation of the cortex and the 
possible implications for the cortical code, we employed VSD 
imaging of the cortex in response to a range of tactile inputs in 
the rat vibrissa system. 

The VSD imaging captures the spatially distributed activa-
tion of cortex at a relatively high temporal resolution (see 
MATERIALS AND METHODS), enabling the simultaneous measure-
ment across cortical columns. Figure 1C shows an example of 
the cortical response to a punctate deflection of a single 
vibrissa over time. The response initially appeared constrained 
in the primary cortical barrel-related column at 10 ms after the 
stimulus onset, quickly spread to adjacent columns, peaked at 
�25 ms, and gradually decayed back to baseline at �100 ms, 
consistent with previous findings (Lustig et al. 2013; Petersen 
et al. 2003a). Figure 1D shows the corresponding time courses 
of the single trials and the averaged trial of the response in Fig. 
1C. The fluorescence was averaged within the primary and 
adjacent barrels. It should be noted that the VSD signal has 
been shown to be approximately linearly proportional to the 
underlying subthreshold membrane potential in the rat barrel 
cortex (Petersen et al. 2003a, 2003b). We then performed ideal 
observer analysis to analyze the potential effects of sensory 
adaptation on cortical information coding. For a detection task, 
each trial was classified as detected signal or noise based on the 
average fluorescence in the primary barrel; for a discrimination 
task, each trial was classified as whisker 1 or whisker 2 
deflection, based on the average fluorescence in both primary 
and adjacent barrels. 

Frequency and Velocity of Adapting Stimuli Differentially 
Shape Cortical Response 

It is well established that the barrel cortex is highly sensitive 
to the frequency and velocity of whisker deflections, which are 
primary parameters comprising the kinetic signature of whisker 
motion (Arabzadeh et al. 2004, 2005; Chung et al. 2002; Khatri 
et al. 2004; Moore 2004; Ritt et al. 2008; Temereanca et al. 
2008; Wolfe et al. 2008). Therefore, we investigated to what 
extent these properties of the adapting stimulus shape the 
cortical response, particularly the spatial activation, through 
VSD imaging. An example of this characterization is shown in 
Fig. 2. We compared the cortical responses to a 1,200°/s 
punctate deflection, referred to here as the test probe, recorded 
under different conditions. First, in the absence of any prior 
adapting deflections of the vibrissae, the recorded cortical 
response to the test probe was referred to as the nonadapted 
response, a typical example of which is shown in Fig. 2, top. 
For the adapted responses, the cortical activation was recorded 
in response to the test probe stimulus following an adapting 

stimulus of varying frequency and velocity (see MATERIALS AND 

METHODS). In this example, nine different adapting trains were 
derived from the combination of three frequencies (4, 10, 
and 20 Hz) and three deflection velocities (100, 500, and 
1,200°/s), while the test probe remained a single deflection 
of 1,200°/s on either one of two adjacent whiskers before 
and following adaptation. Each image in the grid shows the 
response to the test probe following an adapting stimulus of 
a certain frequency and velocity. The responses shown are 
time-averaged from signal onset to peak (10 –25 ms post-
stimulus, see DISCUSSION). 

The nonadapted state showed significant qualitative overlap 
of the cortical responses to adjacent whisker stimuli. Adapta-
tion tended to attenuate the magnitude of the cortical re-
sponses, while also spatially localizing the response, consistent 
with previous studies describing the spatial “sharpening” of the 
cortical response following adaptation (Kleinfeld and Delaney 
1996; Lee and Whitsel 1992; Moore 2004; Moore et al. 1999; 
Ollerenshaw et al. 2014; Sheth et al. 1998; Simons et al. 2005; 
von Bekesy 1967). This effect, however, was very dependent 
upon the nature of the adapting stimulus. At any given velocity 
of the adapting stimulus, as the frequency of the adapting 
stimulus increased (top to bottom), the cortical response to the 
test probe decreased in magnitude and in area. Similarly, at any 
given frequency, as the velocity increased (left to right), the 
cortex was also increasingly suppressed. Most importantly, 
different adapting stimulus trains led to similar cortical re-
sponses. For example, an adapting stimulus with low frequency 
but high velocity (such as 4 Hz and 1,200°/s) and one with 
higher frequency but lower velocity (such as 10 Hz and 500°/s) 
had qualitatively similar effects on the response to the same 
probe stimulus. Note that, in this experiment, we additionally 
tested the entire range of velocities coupled with a frequency of 
40 Hz, but the resulting cortical response was largely sup-
pressed, even more so than for the 20-Hz case (not shown). 
These same qualitative effects were noted across all experi-
ments (n � 7 animals, 14 whiskers), although the exact 
combinations of the velocities and frequencies of the adapting 
stimuli were slightly different across different animals (see 
MATERIALS AND METHODS). 

This qualitative observation, coupled with previous find-
ings (Arabzadeh et al. 2004) suggested that the total energy 
in the adapting stimulus might be the relevant determinant 
of the degree of adaptation. Here, we define the total energy 
in the stimulus as the square of the whisker deflection angle, 
integrated over the duration of the adapting stimulus, as in Fig. 
3A, top. Although this would be analytic for purely sinusoidal 
inputs, for the pattern of exponentially rising and decaying 
deflections we presented, the energy was computed numeri-
cally (see MATERIALS AND METHODS). Figure 3A shows that the 
adapting stimulus energy increased with higher frequency 
and/or velocity. An adapting stimulus with higher frequency 
but lower velocity had a similar energy as one with lower 
frequency but higher velocity. In terms of the cortical response, 
the adaptation intensity was derived as a metric for the degree 
of adaptation, similar to those commonly used in studies 
characterizing adaptation in spiking activity (Chung et al. 
2002; Higley and Contreras 2007; Khatri et al. 2004). It was 
defined as 1 minus the ratio of the total fluorescence in the 
trial-averaged image of the adapted response to that of the 
corresponding nonadapted response (see MATERIALS AND METH-
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1200 °/s 1 mm 

Non-adapted Whisker 1
 OR 0.1 

0 % ΔF/F0Whisker 2 

1200 °/s

 4 Hz, 100 °/s 

1200 °/s

 4 Hz, 500 °/s 

1200 °/s

 4 Hz, 1200 °/s 

1200 °/s 

0 Hz, 100 °/s1

1200 °/s

 10 Hz, 500 °/s 

1200 °/s

 10 Hz,1200 °/s 

1200 °/s 

0 Hz, 100 °/s2

1200 °/s

 20 Hz, 500 °/s 

1200 °/s 

20 Hz, 1200 °/s 

Fig. 2. Cortical responses to separate deflections on two adjacent whiskers. Whiskers deflected were E3 and E4; responses were averaged over 30 trials. Top: 
nonadapted response, stimulus protocol consisted of two separate single deflections on the two adjacent whiskers. Bottom: adapted responses. An adapting 
stimulus train was applied on either one of two adjacent whiskers for 1,000 ms at 4, 10, or 20 Hz, and each deflection within the adapting stimulus was 100, 
500, or 1,200°/s, resulting in 9 combinations of adapting stimuli. A single deflection followed on the same whisker as a probe, at a fixed velocity across all 
adapting stimulus conditions. Images were trial-averaged and time-averaged from signal onset to peak (10–25 ms after stimulus onset). The cortical response 
became increasingly suppressed with increasing frequency and/or velocity. 

ODS). Figure 3B shows that the adaptation intensity increased 
with increasing adapting stimulus energy (r � 0.96, P � 
0.0005), demonstrating that a continuum of adapted responses 
exists, and that the degree of adaptation is shaped by the 
temporal feature of the adapting stimulus. Note that each data 
point is the average of all adaptation intensities within a range of 
adapting stimulus energy. Thus different frequency and velocity 
combinations can result in similar adaptation intensities. 

As shown qualitatively in Fig. 2, as the cortex adapts, both 
the magnitude and the area of the response tend to decrease 
together. To quantify the above observations in detail, a two-
dimensional Gaussian model was fitted to the trial-averaged 
image (see MATERIALS AND METHODS). The magnitude of the 
response was defined as the amplitude of the Gaussian fit, and 
the response area was defined as the area of the Gaussian 
contour at 1 SD (examples of which are shown in Fig. 3C, 
right). Figure 3C shows the trial-averaged magnitude (black 
curve) and the area (gray curve) spanning the adapting stimulus 
energy range. The trial-averaged magnitude and area for each 
stimulus condition were binned according to their adaptation 
intensity; thus each data point represents the mean and SE of 
multiple trial-averaged responses in the same range of adapta-

tion intensity. As an example, the right side shows the trial-
averaged responses at three different adaptation intensities. As 
adaptation intensified, the response magnitude decreased (cor-
relation between average magnitude and adaptation intensity 
r � �0.93, P � 0.0005), as demonstrated in the example 
images. At the same time, the area of the response also 
decreased (r � �0.97, P � 0.0005), as shown by the bold 
black outlines in the example images. When the contour of the 
response to the corresponding adjacent whisker deflection was 
superimposed (gray outlines), it was evident that the responses 
to the two adjacent whisker deflections became less overlapped 
as adaptation intensified. Qualitatively, this seems to suggest 
that, as the magnitude decreased, the response may become 
harder to detect; however, as the area also decreased, it may 
become easier to discriminate between the responses to adja-
cent whisker deflections. Although many studies have posited 
that a spatially sharpened response at the level of cortex may be 
a potential mechanism for enhanced spatial acuity observed in 
psychophysical studies (Lee and Whitsel 1992; Moore 2004; 
Moore et al. 1999; Sheth et al. 1998; Simons et al. 2005; von 
Bekesy 1967), the relationship between average response and 
quantitative information conveyed trial to trial is not trivial 
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A B Fig. 3. Cortical response decreased in both 
Vibrissa magnitude and area with stronger adapting 

stimulus energy. A: the total energy in the 
adapting stimulus increased with frequency 
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spread. The Gaussian contour of the response 
to the corresponding adjacent whisker deflec-
tion was superimposed (gray outline), dem-
onstrating that stronger adaptation reduced 
area overlap between the responses from the 
adjacent barrels. Scale bar, 1 mm. 

(Averbeck et al. 2006; Pouget et al. 1999). Only recently has 
the cortical response been analyzed on a single-trial basis in 
terms of what information is available for detection and dis-
crimination tasks (Ollerenshaw et al. 2014; Wang et al. 2010). 
However, these studies investigated the cortical information 
and detection-discrimination tradeoff in a binary manner, in 
either the presence or absence of an adapting stimulus. How 
the properties of the adapting stimulus and the continuum of 
cortical responses may shape the detectability and spatial 
discriminability of the whisker inputs, therefore, is unknown. 
Furthermore, it is also the case that accurately determining the 
cortical area of activation involves several assumptions and is 
itself nontrivial. We, therefore, turn to ideal observer analysis 
as a simpler and more powerful description of the information 
conveyed by the cortical signals. 

Adaptation Degrades Detectability of the Stimulus 

To assess the potential significance of the changes in the 
cortical activation following adaptation, we evaluated the abil-
ity of an ideal observer to discern between the spatially 
disparate whisker stimuli. Because the adaptation affects not 
only the area of cortical activation, but also the magnitude of 
cortical activation above the intrinsic noise level, we consid-
ered both the discriminability of spatially disparate stimuli as 
well as their detectability, as the coupling between these two 
aspects of cortical activation suggested a tradeoff between 

detectability and discriminability. In the detection task, the 
ideal observer of the cortical recordings was required to report 
whether a whisker had been deflected; in the discrimination 
task, the ideal observer reported which of the two adjacent 
whiskers was deflected. 

Figure 4 shows the detection performance on a single-trial 
basis from the ideal observer’s perspective. Figure 4A shows 
examples of signal and noise probability distributions from one 
animal at zero (nonadapted), medium, and high adaptation 
intensities. The signal distribution consisted of all single-trial 
responses, where each trial was represented by the average 
fluorescence in the primary barrel (Fig. 4A, inset; see MATERIALS 

AND METHODS). Both the noise and signal distributions were 
characterized as Gaussian distributions (see MATERIALS AND 

METHODS). In the framework of conventional signal detection 
theory, the detectability of a signal is a function of the sepa-
ration between the signal distribution and the noise distribu-
tion, a correct classification of an observation as signal depends 
on attributing the observation to the signal distribution and not 
to the noise distribution, and vice versa (Macmillan and Creel-
man 2004). The separation between the signal distribution and 
the noise distribution is determined by two factors: the distance 
between their means and their SDs. Qualitatively, a smaller 
distance between the means obscures the distinction between 
two distributions, and a smaller standard deviation has the 
opposite effect (Macmillan and Creelman 2004). 

J Neurophysiol • doi:10.1152/jn.00978.2014 • www.jn.org 

http://jn.physiology.org/
www.jn.org


    

                        
                          

                       
                       

                          
                       

                         
                       

         

          
         

        
         

             
          
        

          
        
        

          
           

            
          

         
         

       
          

        
           

      

I 

• 
• 

3858 ADAPTIVE CORTICAL SELECTIVITY 

A B Detection Performance Space 
0.8 

900.06 % ΔF/F0 

by 10.220.32.246 on O
ctober 1, 2017

http://jn.physiology.org/
D

ow
nloaded from

 

Noise 

Adaptation Intensity 
0.58 

0 

11mm 

Non-
adapted 

Normalized 

−1 0 1 2 

−1 0 1 2 

St
an

da
rd

 D
ev

ia
tio

n
N

or
m

al
iz

ed
 %

 Δ
F/

F0
 

Stronger
 Adaptation 

0.2 0.6 1.0 

Pr
ob

ab
ili

ty 0.6 80 
0.04 

0.02 
70 

60 

0.4 

0.2 % Correct0 

0.06 

0.04 

0.02 

0 

TrialsSignal Mean 
Normalized % ΔF/F0 

DC 1.21.2 

St
an

da
rd

 D
ev

ia
tio

n

Signal Mean 

N
or

m
al

iz
ed

 %
 Δ

F/
F0

 

Standard Deviation

N
or

m
al

iz
ed

 %
 Δ

F/
F0

 

0.80.8 

0.4 

0 

0.4 

Adaptation Intensity 
0.88 

−1 0 1 2 

0 0.2 0.4 0.6 0.8 1 0  0.  4  0.  8  1.  2  
Adaptation Intensity Signal Mean 

Normalized % ΔF/F0 

0.06 

0.04 

Detection Analyzed withDetectionE F0.02 Adapted Noise DistributionPerformance 

0 

%
 C

or
re

ct
 T

ria
ls 80 

70 

%
 C

or
re

ct
 T

ria
ls 80 

70 

Primary Barrel Magnitude 
(Normalized % ΔF/F0) 

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

Adaptation Intensity Adaptation Intensity 
Fig. 4. Detectability of the stimulus was degraded with adaptation. A: detection performance of an ideal observer measures the separation of the signal distribution 
from the noise distribution. This was defined as the percentage of trials correctly classified as signal or noise using the likelihood ratio test (LRT; see MATERIALS 

AND METHODS). As the three examples demonstrated, the mean and standard deviation of the signal distribution both decreased with adaptation, which would have 
opposite effects on the separation of signal from noise. B: the optimal detection performance increased with larger signal mean but smaller standard deviation. 
The change in standard deviation and mean induced by adaptation is indicated by the black line. The arrow indicates the direction of stronger adaptation. C: the 
mean (r � �0.98, P � 0.0005) and standard deviation (r � �0.7, P � 0.017) of the signal distribution decreased with adaptation intensity. D: the standard 
deviation of the signal distribution is correlated with its mean (r � 0.76, P � 0.0068). E: as signal mean and standard deviation both decreased with stronger 
adaptation, the detection performance on the line shown in B also decreased with stronger adaptation. F: detection performance is qualitatively the same when 
analyzed using the noise distribution following the adapting stimulus. 

To fully quantify the effects of the mean and standard 
deviation on detectability in this framework, we calculated the 
optimal classification performance for a range of these param-
eters (Fig. 4B). For each mean and standard deviation (corre-
sponding to a single square in the color map in Fig. 4B), we 
drew 1,000 single trials from a normal distribution with the 
given signal mean and standard deviation designated as “sig-
nal” trials, and 1,000 single trials from a normal distribution 
with the constant prestimulus noise mean and standard devia-
tion designated as “noise” trials. Any given single-trial re-

sponse R was optimally classified by the LRT, where the 
probability that R was a signal trial, P(S|R), was compared with 
the probability that it was a noise trial, P(N|R). A single trial 
was correctly identified as a signal if P(S|R) P(N|R), but 
misclassified as noise if P(S|R) � P(N|R). Any given single 
noise trial was similarly classified. The percentage of trials 
correctly classified was defined as detectability. Therefore, 
each square on the color map represents the theoretical optimal 
classification performance given a noise distribution and a 
signal distribution, where chance is 50%. We show that, for a 
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given noise distribution, detectability decreased with smaller 
mean of the signal distribution, but increased with smaller 
standard deviation. 

However, as shown in Fig. 4A, both the mean and the 
standard deviation of the signal distribution decreased with 
more intense adaptation, making the possible effects of adap-
tation on detection ambiguous. Thus we quantified the rela-
tionship between the mean and the standard deviation of the 
signal distribution as the system adapts. As shown in Fig. 4, C 
and D, with increasing adaptation intensity, both the mean and 
standard deviation of the signal distribution decreased (for 
mean r � �0.98, P � 0.0005, for standard deviation, r � 
�0.7, P � 0.017), and the standard deviation decreased with 
smaller mean (Fig. 4D; r � 0.76, P � 0.0068). Mean and 
standard deviation were averaged across animals (n � 14). The 
linear relationship between the mean and the standard devia-
tion in Fig. 4D was traced by the black line on the LRT color 
map in Fig. 4B, with the arrow indicating the direction of 
stronger adaptation (same as the direction of decreasing mean 
with stronger adaptation, as quantified in Fig. 4C). Extracting 
the LRT results along the line, detection performance de-

A B 
Whisker 1 Deflection 

creased nearly 20% monotonically with stronger adaptation 
(Fig. 4E). 

For simplicity in the analysis, the same noise distribution 
was used in all adapting conditions. To ensure the result was 
not sensitive to the choice of prestimulus time frames, 
analyses were repeated using noise distributions derived 
from the time period following the adapting stimulus (see 
MATERIALS AND METHODS). The detection performance still 
showed a monotonic decrease with adaptation from �80% 
to 60%, as shown in Fig. 4F. 

Moderate Extent of Adaptation Enhances Discriminability of 
the Stimulus 

Figures 5 and 6 show the discrimination performance on a 
single-trial basis from the ideal observer’s perspective. Each 
single trial was represented with a two-dimensional variable, 
consisting of the average fluorescence in the cortical barrel-
related columns corresponding to the two adjacent whiskers 
(denoted R1 for barrel 1 and R2 for barrel 2, Fig. 5A, see 
MATERIALS AND METHODS). The response of barrel 1 to deflection 
of whisker 1 is denoted R1|W1, while the response of barrel 2 
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Fig. 5. Ideal observer analysis of spatial discrimination. A: the average fluorescence signals in the two stimulated barrels (highlighted with black ellipses) were 
collected to represent each single trial. The average fluorescence in the barrel corresponding to whisker 1 (W1) was designated as R1 and so on. For whisker 1 
stimulation, R1 was the primary barrel variable, and R2 the adjacent variable. B: for each adaptation intensity, the response variables above the detection threshold 
were collected from all single trials across animals (see Data Analysis in MATERIALS AND METHODS). The response variables R1 and R2 were the average 
fluorescence in the two adjacent barrels [with R1 corresponding to the primary barrel of whisker 1 and R2 to that of whisker 2 (W2)], normalized to amplitude 
of trial-averaged nonadapted response (see MATERIALS AND METHODS). The brown ellipse outlines the trials from whisker 1 stimulation, and the green ellipse 
whisker 2. A single trial was classified as a response to either whisker 1 or whisker 2 stimulation using the LRT (see MATERIALS AND METHODS). The discrimination 
performance was defined as the percentage of trials correctly classified. The outcome of the LRT was directly related to the separability of the two clusters, which 
was determined by the distance between the centers of the clusters (indicated by the plus signs), standard deviation (in both horizontal and vertical directions), 
and correlation of the clusters. C: a cartoon illustration of improved discriminability by the increased distance between the centers of the clusters. D: a cartoon 
illustration of improved discriminability by decreased standard deviations. E: a cartoon illustration of improved discriminability by increased noise correlation. 
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Fig. 6. Discrimination performance peaked at an intermediate adaptation intensity. A: discrimination performance was strongly influenced by variability within 
column and noise correlation across columns. Discrimination performance increased with higher noise correlation but lower standard deviation of the variable 
clusters. The change in standard deviation and noise correlation induced by adaptation is indicated by the black curve. The arrow indicates the direction of 
stronger adaptation. For simplicity, the combined primary and adjacent barrel variable standard deviation is shown on the map because they were well correlated 
(r � 0.87, P � 0.0005). The distance between the cluster centers was not included as a factor because it did not demonstrate correlation with adaptation intensity 
(r ��0.17, P � 0.61) or the cluster mean (r � 0.46, P � 0.16, data not shown). B: the standard deviation of the primary barrel variables and that of the adjacent 
barrel variables were correlated (r � 0.87, P � 0.0005). C: correlation across columns was maximal at an intermediate within-column variability (combined 
primary and adjacent barrel standard deviation). D: the values on the performance map along the black curve in A were extracted and plotted against adaptation 
intensity. Similar to Fig. 4, C and D, the combined standard deviation decreased with stronger adaptation (data not shown). The discrimination performance 
peaked at an intermediate adaptation intensity. E: the discrimination performance is relatively insensitive to the detection threshold. Each discrimination 
performance was evaluated using a fraction of the detection threshold value that yielded 10% false alarm rate (see MATERIALS AND METHODS). F: discrimination 
performance was qualitatively the same when analyzed using the noise distribution following the adapting stimulus. G: a possible computational mechanism for 
the overall nonlinear noise correlation. Each axis represents a component of correlated neural activity, and each square is the overall noise correlation that is the 
sum of the two components. The black curve represents a possible scenario where one component increases its noise correlation with adaptation, while the other 
decreases its noise correlation, thus creating an overarching effect for the overall noise correlation. The arrow indicates the direction of stronger adaptation. 
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to deflection of whisker 1 is denoted R2|W1, and so on. For each 
stimulus condition, all trials form a scatter plot (Fig. 5B). 

As it is unlikely that either the animal or the ideal observer 
could distinguish the stimulus features without detecting the 
stimulus first, only detectable trials were considered for dis-
crimination analysis. Because behaving animals are observed 
to respond to �10% of stimulus-absent trials in a detection task 
(Ollerenshaw et al. 2012; Stüttgen et al. 2006; Stüttgen and 
Schwarz 2008), we utilized a detection threshold value that 
yielded 10% false-alarm rate (see MATERIALS AND METHODS). 

Due to experimental constraints in the VSD imaging, the 
trials available for discrimination were limited. Thus all de-
tectable trials across all animals were normalized to the max-
imum value in the nonadapted response (see MATERIALS AND 

METHODS), merged, and grouped according to their correspond-
ing adaptation intensity (n � 7 animals). The responses to 
either whisker deflection were approximately symmetric, in 
that the response in the primary and adjacent barrels to a single 
whisker stimulus mirrored the analogous responses when the 
adjacent whisker was stimulated. Under this assumption, the 
responses were further combined, reducing the responses to 
the primary, (R1|W1), (R2|W2), and adjacent barrel, (R2|W1), 
(R1|W2), responses. Adjacent whisker stimulation responses 
were mirrored from the combined result. 

An example of the response clusters is shown in Fig. 5B. The 
trials from whisker 1 deflection are outlined by the brown 
ellipse, and the trials from whisker 2 deflection (mirrored from 
whisker 1 deflection) are outlined in green. The overlap of the 
two response clusters directly determines the level of perfor-
mance to expect in discriminating between the deflections of 
either of the two whiskers. Qualitatively, the overlap of the 
two-dimensional clusters is determined by the distance be-
tween the cluster means (black plus signs), their overall stan-
dard deviations, and the noise correlation between R1 and R2. 
Noise correlation is computed as the Pearson correlation be-
tween R1 and R2, as the correlation across trials is not depen-
dent on the average responses to the stimulus, but on the 
trial-to-trial variability (Averbeck et al. 2006). Figure 5, C–E, 
provides illustrations of how these key parameters influence 
the degree of overlap and thus the level of discriminability. 
As shown in Fig. 5C, if the centers of the clusters are farther 
apart (compare with the original cluster outlines in Fig. 5B) 
while variability and noise correlation were held constant, 
then the ellipses are farther away from each other. Similarly, 
if the variability of the individual column response is 
smaller while the centers and noise correlation remained 
unchanged (Fig. 5D), the area overlap between the ellipses 
also decreases. Finally, if the noise correlation of the re-
sponses across columns is higher with the same centers and 
variability (Fig. 5E), the ellipses become more elongated, 
and the ellipses are thus less overlapped. 

The theoretical optimal classification performance in rela-
tion to its determinants is quantified in the color map in Fig. 
6A. The distance between the cluster means was not strongly 
influenced by adaptation, and was thus not included (see 
MATERIALS AND METHODS, data not shown). Furthermore, be-
cause the variability along the horizontal axis ( 1, standard 
deviation of primary barrel variable) and that along the vertical 
axis ( 2, standard deviation of adjacent barrel variable) were 
correlated (r � 0.87, P � 0.0005; Fig. 6B), they were jointly 
presented as a combined standard deviation (see MATERIALS AND 

METHODS) for a clearer visualization. Thus, assuming a fixed 
distance between the cluster means, for each given standard 
deviation and noise correlation combination, we quantified the 
optimal discrimination performance by classifying 1,000 single 
trials drawn from a normal distribution with the given param-
eters, which essentially approximates the area overlap between 
the ellipses. The discrimination performance was evaluated 
with the LRT. Given a particular single-trial response R � (R1, 
R2), the probability that it resulted from whisker 1 stimulation, 
P(W1|R), was compared with the probability that it resulted 
from whisker 2 stimulation, P(W2|R). A single trial that was 
truly drawn from whisker 1 deflection was correctly classified 
if P(W1|R) P(W2|R), but otherwise misclassified as whisker 
2 stimulation. Discrimination performance increased with 
higher noise correlation at a given standard deviation, and with 
smaller standard deviation at any given noise correlation. 

Next, we located where the experimental observations reside 
in the theoretical optimal performance map in Fig. 6A. We  
expected the standard deviation to decrease with adaptation, as 
shown in Fig. 4. However, it was not immediately clear how 
the noise correlation covaried with standard deviation, and how 
this would affect discriminability. We found that, similar to 
data presented in Fig. 4, C and D, the combined standard 
deviation decreased with stronger adaptation, and that noise 
correlation was maximal at an intermediate standard deviation 
(Fig. 6C; see MATERIALS AND METHODS). This nonlinear relation-
ship between the combined standard deviation and the noise 
correlation is indicated by the black curve on the color map in 
Fig. 6A. The arrow indicating the direction of stronger adap-
tation in Fig. 6A is in the direction of decreasing standard 
deviation. Extracting the LRT results along the curve, we show 
that discrimination performance followed a similar trend as the 
noise correlation and reached a maximum at an intermediate 
adaptation intensity (Fig. 6D). This nonlinearity could arise 
from multiple mechanisms that have opposing effects on cor-
related activity (see DISCUSSION and Fig. 6G). Note that rela-
tively modest changes in the noise correlation resulted in a 
nearly 10% increase in discrimination performance. 

Although the choice of detection threshold was based on 
animal task performance from previous studies (Ollerenshaw et 
al. 2012; Stüttgen et al. 2006; Stüttgen and Schwarz 2008), to 
ensure that the discrimination result does not solely depend on 
a particular level of detection threshold, we repeated the 
analysis for a range of assumed thresholds in Fig. 6E. Specif-
ically, we performed the discrimination analysis with the 
threshold set to 0, 25, 50, 75, and 100% of the detection 
threshold. Regardless of the detection threshold value, includ-
ing the 0% level, which essentially constituted no threshold, 
the discrimination result was qualitatively the same, where the 
discriminability was the highest at a moderate adaptation 
intensity of �0.5, but lower at either end of the adaptation 
spectrum. 

In these analyses, the noise distributions were derived from 
the nonadapted cases for simplicity. It is, however, possible 
that the adaptation influences the noise distributions against 
which signals would be compared. To directly test whether this 
produced a significant effect, we derived detection thresholds 
specific to each adapting condition, using the adapted noise 
distributions described above (see Detection above). We found 
that the discrimination performance was qualitatively the same 
(Fig. 6F). 
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Taken together, the results thus far suggest that varying 
degrees of adaptation shape detectability and discriminability 
in distinctly different ways. The detection and discrimination 
performances as a function of adaptation intensity are summa-
rized in Figs. 4E and 6D. The fact that the detectability 
decreased monotonically with increasing amounts of adapta-
tion implies that a stimulus is most detectable in the non-
adapted state (adaptation intensity � 0). In contrast, the prob-
ability of correctly discriminating a stimulus given that it was 
detected was the highest at an intermediate adaptation inten-
sity. As described in Fig. 3B, the adaptation intensity is a 
function of the overall energy in the adapting stimulus. As a 
result, the intermediate adaptation intensity corresponds nonu-
niquely to a range of velocities and frequencies that lead to a 
stimulus energy of �500 degrees2 � ms. For the experimental 
conditions here, this corresponds to a low velocity adapting 
stimulus that is in the 10- to 20-Hz range, or one that has a 
lower frequency of 4 Hz but a higher velocity. These different 
modes of vibrissa motion with complementary frequency and 
velocity could be related to natural whisking behavior that is 
thought to adapt the sensory pathway in behaving rats and 
speculated to improve tactile discrimination (Fanselow and 
Nicolelis 1999; Moore 2004; Semba and Komisaruk, 1984; 
also see DISCUSSION). 

DISCUSSION 

Rats can reliably discriminate between stimulation of adja-
cent whiskers, further enhanced by adaptation (Ollerenshaw et 
al. 2014). Although, as in most behavioral studies, this was an 
artificial task, the performance reflects spatial acuity, much like 
two-point tactile discrimination in humans. As the rodents 
palpate objects with their whiskers, the spatial resolution at 
which the sensors are represented centrally affects information 
transmitted. If adjacent whiskers cannot be distinguished, they 
likely convey redundant information, even though they contact 
different parts of the object. Furthermore, the form of adapta-
tion here carries ethological relevance. Moderate adaptation 
resulted from either a low-velocity adapting stimulus at a high 
frequency (10–20 Hz), or one of high velocity but low fre-
quency (4 Hz). In behavioral studies, different frequencies of 
natural whisking have been observed (Fanselow and Nicolelis 
1999; Semba and Komisaruk 1984). Importantly, similar to 
what was demonstrated with passive adaptation here, the 
higher frequency range whisking exhibited smaller amplitude 
and vice versa. We speculate that the frequency-amplitude 
switch in whisking behavior likely conserves energy in whisk-
ing movements, producing similar effects on spatial acuity. 
With high-energy adaptation, both detectability and spatial 
discriminability degrade, resulting from high-frequency, high-
velocity adapting stimuli not observed in natural whisking. Our 
observations are thus consistent with a continuous modulation 
of information processing to facilitate the tradeoff between 
detectability and spatial acuity in the natural environment. 

Although adaptation has been widely studied, there is no 
consensus as to a single hallmark effect or biophysical mech-
anism, likely pointing to a range of mechanisms and manifes-
tations. Particularly, although a range of studies have shown 
consistent decreases in firing with adaptation, recent studies 
have suggested more nuanced effects, with diverse functional 
consequences across cortical laminae and cell types (Heiss et 

al. 2008; Higley and Contreras 2006; Khatri et al. 2004). 
Demonstrated here with VSD, which captures the aggregate 
subthreshold activity across cell types within layer 2/3, is a net 
suppressive effect of adaptation, but the relative contributions 
of different cell types and mechanisms cannot be determined 
with this approach. However, the most prominent feature of 
adaptation, the reduction in cortical activity, is linked to 
thalamocortical synaptic depression (Chung et al. 2002) and 
reflects a weaker thalamic drive due to thalamic desynchroni-
zation (Temereanca et al. 2008; Wang et al. 2010), as we 
demonstrated in awake animals (Ollerenshaw et al. 2014). One 
possible explanation for the cortical spatial sharpening here is 
that cortical cells with direct ventral posterior medial nucleus 
(VPm) inputs adapt less than those without (Chung et al. 
2002); VPm cells project primarily to barrels, while medial 
posterior nucleus cells project primarily to septa and exhibit 
more prominent adaptation than VPm cells, creating a sharp-
ened spatial response (Diamond 1995; Diamond et al. 1992; 
Moore et al. 1999). The response modulation by adaptation 
likely reflects a complex combination of these mechanisms and 
others. The fact that the cortical response is continuously 
modulated suggests that at least one mechanism may also 
operate on a continuum. Finally, it is likely that the adaptive 
effects observed here are affected by anesthesia. However, it is 
clear from our laboratory’s previous work (Ollerenshaw et al. 
2014) that, in the awake state, adaptation results in similar 
trends in the tradeoff between detectability and discriminabil-
ity. It further demonstrated in the awake animal clear adapta-
tion effects on the thalamic inputs that drive the cortical 
activation, strikingly similar to those observed under anesthe-
sia (Chung et al. 2002; Ganmor et al. 2010; Khatri et al. 2004; 
Temereanca et al. 2008; Wang et al. 2010). Thus the funda-
mental findings here likely reflect how similarly adapting 
stimuli would shape activation in the awake animal. 

Adaptation-induced spatial sharpening has long been spec-
ulated as a mechanism for enhanced spatial acuity in psycho-
physical studies (Sheth et al. 1998; von Bekesy 1967). How-
ever, average responses do not dictate the information con-
veyed (Averbeck et al. 2006; Pouget et al. 1999). In fact, we 
found that the main factor shaping the discriminability was the 
noise correlation of activation across cortical columns. Al-
though many studies point out the peril of noise correlation in 
coding efficiency (Abbott and Dayan 1999; Adibi et al. 2013; 
Middleton et al. 2012; Zohary et al. 1994), it should be noted 
that noise correlation can have different effects on coding 
efficiency, depending on the relationship between the average 
responses (Averbeck et al. 2006). For neurons sharing func-
tional feature selectivity, such as those in the same column, a 
stimulus evokes similar average responses in the units re-
corded. That is, the average responses to two separate stimuli 
would both be located along the unity line (see Averbeck et al. 
2006, Fig. 1). In contrast, in the context of the spatial discrim-
inability here, the functional units recorded are two adjacent 
columns, where a stimulus evokes dissimilar average re-
sponses, with the primary barrel having the stronger average 
response. Thus increased noise correlation results in an in-
crease in the separability of the responses (see Fig. 5E). 

To explore population correlation and its impact on neural 
coding, we measured the correlation between the averaged 
population activity in the primary and adjacent barrels. As 
briefly discussed in MATERIALS AND METHODS, the neural signal 
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that supports the detection of a sensory input can be temporally 
integrated. In particular, decision making often requires inte-
gration of information over time (Gold and Shadlen 2007; Huk 
and Shadlen 2005). In addition, it is unlikely that an animal 
makes multiple decisions every few milliseconds on a simple 
stimulus over a very short period of time, as the VSD signal 
decays after 100 ms. After the peak frame, the VSD signal 
decays in the primary barrel and spatially spreads throughout 
the cortex. We infer that these later time frames are not used by 
the animal in this context, since the spatially homogeneous 
cortical activation in later frames would preclude spatial dis-
crimination, inconsistent with our laboratory’s previous behav-
ioral observations (Ollerenshaw et al. 2014). Therefore, the 
response in each barrel was further time-averaged from the typical 
onset time (10-ms poststimulus, consistent with the cortical re-
sponse latency in this pathway) to peak of cortical response (25 
ms). Although VSD measures population activity, the local VSD 
signal corresponds well with single-unit subthreshold whole cell 
recording, indicating an overall high level of synchrony in 
subthreshold population activity in the cortex (Petersen et al. 
2003a). This is consistent with our result of relatively high 
noise correlation and with findings in cat and monkey visual 
cortex (Chen et al. 2006; Lampl et al. 1999). However, action 
potentials in the whole cell recordings are not detected in the 
VSD signals. Possibly due to the diverse receptive field prop-
erties of layer 2/3 neurons (Simons 1978), the low firing rate 
correlation measured in single-neuron pairs (Gawne and Rich-
mond 1993; Lee et al. 1998; Middleton et al. 2012; Romo et al. 
2003; Zohary et al. 1994) is likely a nonlinear transformation 
of the population subthreshold correlation measured with VSD. 
Nevertheless, consistent with part of our findings, Adibi and 
colleagues (2013) also demonstrated that adaptation increased 
noise correlation, albeit of firing rates in both single-unit pairs 
and populations. 

Furthermore, we found that adaptation nonmonotonically 
influenced the noise correlation. It has been shown that, re-
gardless of stimulus condition, noise correlation in single-unit 
firing rates is inversely proportional to the mean (Adibi et al. 
2013). Here, adaptation monotonically decreased the magni-
tude of the response to the subsequent whisker deflection. The 
little-to-moderate range of adaptation was thus consistent with 
observations from Adibi et al. (2013). The more extreme range 
of adaptation deviates from this prediction, however, likely due 
to exceedingly strong suppression of activity in this regime. 
This nonlinearity could arise from several mechanisms having 
opposing effects on correlated activity. The prestimulus noise 
correlation indicates stimulus-independent correlated activity, 
likely mediated by internal brain state (Arieli et al. 1996; Kohn 
et al. 2009; Middleton et al. 2012). The stimulus likely induces 
another stimulus-dependent noise correlation, which could be 
mediated by multiple and opposing mechanisms, such as back-
ground synaptic field and feed-forward inhibition (Middleton 
et al. 2012). Similar to whisking, adaptation likely places the 
cortex into a desynchronized state, thus decreasing the noise 
correlation (Poulet and Petersen 2008). On the other hand, 
adaptation decreases the firing rate in response to the probe 
stimulus, increasing the noise correlation. Additionally, adap-
tation has been shown to shift the excitation-inhibition balance 
(Heiss et al. 2008), which is implicated in high-frequency 
gamma, thus possibly increasing the noise correlation in the 
spontaneous state. The nonlinearity in noise correlation likely 

arises from these diverse mechanisms. Figure 6G illustrates the 
simplest case where the overall cortical activity is the linear 
sum of stimulus-independent and stimulus-dependent compo-
nents. Adaptation could potentially increase the noise correla-
tion of one component while decreasing that of the other 
(traced by the black curve, arrow indicates more profound 
adaptation), making the overall noise correlation initially in-
crease but decrease with more profound adaptation. However, 
further investigation is needed to fully elucidate this issue. 

Although the results here relate to the effects of passive, 
bottom-up adaptation on sensory processing, there are potential 
ties to top-down, internally regulated processing. It is proposed 
that, in an awake but quiescent animal, thalamic bursting leads 
to a large sensory-evoked cortical response, favoring detection; 
in an active animal, thalamic tonic firing results in cortical 
activities more selective of fine features (Crick 1984; Sherman 
2001; Lesica et al. 2006; Lesica and Stanley 2004). Relatedly, 
rodents move their whiskers rhythmically when exploring the 
environment, speculated to enhance tactile discrimination 
(Carvell and Simons 1995; Fanselow and Nicolelis 1999; 
Harvey et al. 2001; Moore 2004). Active whisking suppresses 
S1 response to a single stimulus (Crochet and Petersen 2006; 
Fanselow and Nicolelis 1999; Ferezou et al. 2007), similar to 
what has been demonstrated through passive adaptation (Olle-
renshaw et al. 2014). Although the direct effects of centrally 
regulated, active whisking and the indirect effects of the 
associated brain states on cortical representations are not the 
same as the effects of passive adaptation, the functional simi-
larities of the modulation in activity suggest that these aspects 
may synergistically reinforce the continuous control of infor-
mation transmission described here. 
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