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After sensory information is encoded into neural signals at the periphery, it is processed
through multiple brain regions before perception occurs (i.e., sensory processing).
Recent work has begun to tease apart how neuromodulatory systems influence sensory
processing. Vagus nerve stimulation (VNS) is well-known as an effective and safe
method of activating neuromodulatory systems. There is a growing body of studies
confirming VNS has immediate effects on sensory processing across multiple sensory
modalities. These immediate effects of VNS on sensory processing are distinct from the
more well-documented method of inducing lasting neuroplastic changes to the sensory
pathways through repeatedly delivering a brief VNS burst paired with a sensory stimulus.
Immediate effects occur upon VNS onset, often disappear upon VNS offset, and the
modulation is present for all sensory stimuli. Conversely, the neuroplastic effect of pairing
sub-second bursts of VNS with a sensory stimulus alters sensory processing only after
multiple pairing sessions, this alteration remains after cessation of pairing sessions, and
the alteration selectively affects the response properties of neurons encoding the specific
paired sensory stimulus. Here, we call attention to the immediate effects VNS has
on sensory processing. This review discusses existing studies on this topic, provides
an overview of the underlying neuromodulatory systems that likely play a role, and
briefly explores the potential translational applications of using VNS to rapidly regulate
sensory processing.

Keywords: vagus nerve stimulation, sensory processing, neuromodulation, cholinergic system, dopaminergic
system, serotonergic system, locus coereleus, noradrenergic system

INTRODUCTION

Accurate and detailed perception of tactile, auditory, and visual stimuli is critical for completing
a large variety of tasks, including many necessary for daily life and independent living. Perceptual
acuity is dependent upon both reliable transduction of sensory stimuli into neural signals at the
periphery and high-fidelity processing of sensory information by the central nervous system. Once
sensory information is transduced into neural activity by sensory receptors, it is processed through
multiple stages of the sensory pathway before perception occurs (i.e., central sensory processing)
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(Wall and Dubner, 1972; Rodieck, 1979; Reid and Alonso, 1995;
Chechik et al., 2006; Wang et al., 2010; Ollerenshaw et al.,
2012). Developing methods that use neuromodulation of sensory
processing to improve sensory acuity is of great interest as many
significant clinical, commercial, and consumer problems stem
from misperception or miscommunication. A growing body of
evidence strongly suggests that vagus nerve stimulation (VNS)
is a safe and effective method of neuromodulation (Collins
et al., 2021). In this mini-review, we explore the effects of VNS
on sensory processing. Multiple recent reviews have discussed
in detail the ability of short VNS bursts repeatedly paired
with sensory stimuli to catalyze neuroplastic reorganization of
sensory pathways after multiple pairing sessions (Engineer et al.,
2013; Hays, 2016; Engineer, 2019), likely via engagement of
neuromodulatory systems including the acetylcholine system
(Kilgard and Merzenich, 1998). Here, we instead specifically
call attention to the immediate effects VNS has on sensory
processing and discuss how they likely arise from VNS
activating neuromodulatory systems that innervate sensory
processing pathways.

Sensory processing is highly dependent upon behavioral
states such as attention and arousal (Nicolelis and Fanselow,
2002; Carrasco et al., 2004; Niell and Stryker, 2010; Bennett
et al., 2013; Reimer et al., 2014, 2016; McGinley et al.,
2015; Vinck et al., 2015; Zheng et al., 2015; Schriver et al.,
2018, 2020; Liu et al., 2021) as both are heavily influenced
by the same global neuromodulatory systems, including the
noradrenergic (Berridge and Waterhouse, 2003; Aston-Jones
and Waterhouse, 2016; Liu et al., 2017; Chandler et al., 2019)
and cholinergic systems (Pinto et al., 2013). For example,
our laboratory recently demonstrated that activation of the
locus coeruleus – norepinephrine system (LC-NE), a major
neuromodulator of attention and arousal, rapidly enhanced
somatosensory processing through NE-mediated suppression of
burst spiking induced by calcium T-type channels (Rodenkirch
et al., 2019). This NE-enhanced sensory processing increased
accuracy of encoded information and improved perceptual
sensitivity of awake rats performing tactile discrimination tasks.

LASTING ALTERATIONS TO SENSORY
PROCESSING OCCUR OVER TIME
WHEN A SENSORY STIMULUS IS
REPEATEDLY PAIRED WITH PHASIC
VAGUS NERVE STIMULATION

A large body of previous work has focused on using a short
burst of VNS repeatedly paired with a brief sensory stimulus
to induce reorganization of sensory pathways. This work was
inspired by studies which found pairing an auditory tone with
phasic activation of dopaminergic, cholinergic, or noradrenergic
neuromodulatory systems resulted in a lasting shift of frequency
selectivity for neurons in the auditory cortex that selectively
favors the paired tone’s frequency (Kilgard and Merzenich, 1998;
Bao et al., 2001; Nichols et al., 2011; Martins and Froemke, 2015).
We will not review these studies in detail here as they have already

been well reviewed previously (Engineer et al., 2013; Hays, 2016;
Engineer, 2019).

In general, these studies have delivered phasic VNS (e.g.,
0.5 s, 30 Hz, 0.8 mA, 100 µs biphasic pulses) in pair with
a specific sensory stimulus (e.g., a specific frequency auditory
tone or tactile tap) repeatedly across multiple sessions (e.g.,
300 times/day, 20 days). This alters sensory processing in a
manner that facilitates detection of the specific paired stimulus
(Martinez-Vargas et al., 2009; Engineer et al., 2011; Meyers
et al., 2019; Darrow et al., 2020; Lai and David, 2021) and
accordingly disfavors detection of non-paired stimuli. This
mechanism of action can be strengthened over multiple sessions
of pairing to produce long-term permanent reorganization
of sensory pathways that alters perception. Taken together,
these works suggest phasic VNS has great potential as a next
generation neuromodulation technology for rehabilitative motor
and sensory therapies (Neuhaus et al., 2007; Kreuzer et al., 2014;
Engineer et al., 2015; Tyler et al., 2017; Vanneste et al., 2017;
Kilgard et al., 2018; Adcock et al., 2020; Llanos et al., 2020;
Thakkar et al., 2020; Altidor et al., 2021; Phillips et al., 2021).

TRANSIENT MODULATION OF SENSORY
PROCESSING OCCURS RAPIDLY UPON
VAGUS NERVE STIMULATION ONSET

The purpose of this review is to bring light to recent studies
indicating VNS modulates sensory processing immediately upon
onset. Here, we will discuss in detail studies investigating the
immediate effects VNS has on the response properties of neurons
along the sensory pathways.

Tonic Vagus Nerve Stimulation Drives a
Rapid and Transient Enhancement of
Tactile Processing
Our laboratory has recently demonstrated that VNS can be used
to induce a rapid, general improvement of thalamic sensory
processing (Figure 1). This is a continuation of our team’s studies
investigating the effects of the LC-NE system on thalamocortical
circuitry (Rodenkirch et al., 2019), a critical stage for sensory
processing and perception (Saalmann and Kastner, 2011; Stanley
et al., 2012; Wang et al., 2012; Millard et al., 2013; Kelly
et al., 2014; Ollerenshaw et al., 2014; Wimmer et al., 2015;
Rikhye et al., 2018). These studies found that direct activation
of the LC-NE system (electrical or optogenetic), in a continuous
tonic fashion, optimized intrathalamic dynamics for sensory
processing. Specifically, tonic LC stimulation (continuous, 5 Hz,
60 µA, 500 µs biphasic pulses) increased the efficiency and rate
of sensory-related information transmitted by thalamocortical
neurons (Rodenkirch et al., 2019). Further, the observed NE-
enhancement of sensory processing resulted in a significant
improvement in perceptual sensitivity for rats tasked with
discriminating between whisker stimuli of different frequencies.
Through pharmacological manipulation it was determined that
tonic LC activation improved thalamic sensory processing
because a steady increase in NE concentration precludes priming,
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FIGURE 1 | Tonic VNS suppressed burst spiking of thalamocortical neurons and increased the selectivity of their response to the specific stimulus feature they
encode, leading to a greater amount of sensory-related information transmitted. (A) VNS did not significantly alter firing rate of ventral posteromedial nucleus (VPm)
neurons responding to white gaussian noise whisker (WGN) stimulation. (B) VNS reduced likelihood of VPm burst spikes, multiple successive spikes with a short
inter-spike-intervals (∼4 ms or less) commonly occurring after an extended period of quiescence (∼100 ms) due to calcium t-channel current. (C,D) The amplitude of
the specific kinetic feature(s) (i.e., whisker deflection) each VPm neuron was selective for was much larger when recovered during VNS, indicating VNS increased
selectivity of response. (E) Enhanced feature selectivity of VPm neurons during VNS results in a significant increase in amount of the sensory-related information
transmitted per spike. Adopted from Rodenkirch and Wang (2020).

and in turn activation, of thalamic T-type calcium channels.
When active, T-type calcium channels introduced a non-
linear bursting response that degraded transmission of detailed
sensory information.

Vagus nerve stimulation has been shown to activate the
LC-NE system (Hulsey et al., 2017) and is accessible in a
non-invasive manner, unlike the LC deep in the brainstem.
Therefore, our team next investigated whether tonic VNS would
drive similar rapid beneficial effects on sensory processing.
Through testing the effects of multiple patterns of VNS on
sensory processing, the beneficial effect was found to be highly
transient (i.e., benefit begins to dissipate within seconds of
ceasing VNS) (Rodenkirch and Wang, 2020). For example,
duty-cycled VNS (30 s on/60 s off duty cycle, 30 Hz, 500 µs
biphasic pulses) enhanced tactile sensory processing during
the on cycle, but this enhancement rapidly dissipated during
the off cycle, suggesting that cycling VNS on and off creates
fluctuations in sensory processing that would likely be sub-
optimal for discrimination. This indicated that an uninterrupted
pattern is required to produce a stable benefit. Indeed,
continuous tonic VNS (continuous, 30 Hz, 500 µs biphasic
pulses) induced a steady enhancement of sensory processing
similar to that observed with direct tonic LC stimulation.
This immediate enhancement of sensory processing during
continuous, tonic VNS was found to be reliably present across
recorded neurons. As each recorded neuron encoded for a unique
kinetic feature of the whisker stimuli, this suggests the tonic
VNS modulation provided a general enhancement of sensory
processing regardless of stimulus input. This effect is distinct
relative to the selective facilitation of responses to a specific
sensory stimulus found after repeatedly pairing VNS bursts with
that sensory stimulus.

Further, testing of various tonic VNS current levels and
frequencies showed the beneficial effect of tonic VNS on sensory
processing increased with intensity and frequency (10 vs. 30 Hz,

0.4 vs. 1 and 1.6 mA) and did not exhibit the inverted U-shape
function of effect strength that has been observed with other types
of VNS modulation (Morrison et al., 2019) (at least within the
parameter ranges tested).

Vagus Nerve Stimulation Has Rapid
Effects on Evoked Responses in the
Auditory Cortex
Other research groups working with human subjects have
published findings that suggest VNS has immediate beneficial
effects on auditory processing. One study in humans who
had been receiving chronic VNS (via implanted cuffs as a
treatment for epilepsy), found VNS enhanced performance on a
standard auditory oddball task when compared to performance
after their VNS device was turned off (De Taeye et al.,
2014). Specifically, during VNS (7 s on/18 s off duty cycle,
20–30 Hz, 0.75–3 mA, 250–500 µs pulses) both accuracy
and response time were improved for participants tasked
with responding to low frequency target audio tones while
ignoring high frequency non-target tones. This same study
analyzed auditory event-related potentials (AERP), measured
via EEG, and found that during VNS, AERP amplitude
was also increased. However, the effect on AERP was only
significant in individuals whose epilepsy symptoms had positively
responded to VNS treatment. A separate study investigating
transcutaneous auricular vagus nerve stimulation (taVNS) (30 s
on/30 s off duty cycle, 25 Hz, 250 µs pulses) in healthy
adults found similar results. Specifically, taVNS increased the
strength of AERPs during an oddball auditory task (Rufener
et al., 2018). As this study used low frequency tones as non-
targets and high frequency tones as targets, a reversal of
the prior discussed oddball auditory task, taken together they
suggest immediate VNS modulation of auditory response is
not specific to low or high frequency audio tones. Another
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study delivering continuous taVNS (25 Hz, 500 µs biphasic
pulses) to healthy adults analyzed the neural response to
auditory tones using magnetoencephalography (MEG) instead
of EEG and found taVNS altered synchrony of brain activity
(Hyvarinen et al., 2015). Further, recent studies using fMRI
to monitor neural activity have shown taVNS rapidly affects
auditory processing pathways. When taVNS (25 Hz, 0.1 to
1.8 mA, 500 µs monophasic pulses) was delivered to male adults
with chronic tinnitus, fMRI recordings exhibited altered activity
of multiple brain regions involved with auditory processing
(Yakunina et al., 2018). More recently, analysis of fMRI data
from human subjects receiving taVNS indicated increased
activity in the thalamus and auditory cortex (Peng et al., 2018),
suggesting VNS rapidly modulates central auditory sensory
processing in humans.

These findings in humans are further supported by multiple
electrophysiological and behavioral work in animals that found
VNS rapidly affects the response properties of neurons of the
auditory pathway. In isoflurane-anesthetized rats, the responses
of neurons along the auditory pathway were compared with
and without VNS delivered via an implanted VNS cuff (30 s
on/5 min off duty cycle, 10 Hz, 0.5 mA, 130 µs pulses). The
baseline condition was recorded without any ongoing VNS.
The VNS condition consisted of discontinuous duty-cycled VNS
where auditory testing was performed only during the off periods
of the VNS duty cycle. Here they found duty-cycled VNS
weakened stimulus-specific adaptation in the cortex but not
the thalamus (Shiramatsu et al., 2016), suggesting VNS may
modulate thalamocortical transmission but not earlier stages of
the auditory pathway. Further work by the same group, using
the same paradigm, found VNS predominantly increased the
amplitudes of auditory-evoked potentials in the sensory cortex
(Takahashi et al., 2020).

Vagus Nerve Stimulation Modulates
Olfactory and Gustatory Processing
The immediate effects of VNS on olfactory processing had been
demonstrated as early as the 1980s. Specifically, a study in rats
found that a single pulse of VNS from an implanted cuff (0.8–
1.5 mA, 200 µs monophasic pulses) reliably evoked firing in
the homolateral olfactory bulb (HOB) (Garcia-Diaz et al., 1984).
Further evidence that VNS affects olfactory processing was found
in more recent studies that used positron emission tomography
(PET) to analyze the effects of VNS in awake rats. A PET
scan conducted during the time period when the VNS cuff was
switched on for the first time (30 s on/5 min off duty cycle, 30 Hz,
1.5 mA, 500 µs pulses) found VNS induced a significant increase
in glucose metabolism in both olfactory bulbs (Dedeurwaerdere
et al., 2005). However, another study in humans with implanted
VNS cuffs for treatment of depression found that whether VNS
(30 s on/5 min off duty cycle, 20 Hz, 1.25 mA) was on or off had
no effect on subjects’ ability to discriminate or detect olfactory
stimuli (Sperling et al., 2011). Yet that same study did find that
VNS significantly increased the intensity of the taste of sweet
and bitter, suggesting that VNS may rapidly affect gustatory
processing as well.

VAGUS NERVE STIMULATION
ACTIVATES MULTIPLE
NEUROMODULATORY SYSTEMS THAT
RAPIDLY INFLUENCE THE RESPONSE
PROPERTIES OF NEURONS ALONG
SENSORY PATHWAYS

The ability of VNS to have immediate effects on sensory
processing is likely due to VNS activating neuromodulatory
systems (Figure 2). Here we briefly review studies of the effect
of VNS on neuromodulatory systems in both human and animal
models. Neurons in the neuromodulatory systems and sensory
pathways discussed here can exhibit either tonic or burst spiking
patterns (McCormick and Prince, 1988; Nuñez, 1996; Ramcharan
et al., 2000; Devilbiss and Waterhouse, 2011; Rodenkirch et al.,
2019). Tonic spiking refers to sustained firing of individual spikes
at relatively slow rates compared to phasic. Phasic spiking refers
to transient bursts of multiple spikes with short inter-spike-
intervals. For neuromodulatory systems, the rate of continuous
tonic spiking modulates brain state (e.g., attention and arousal)
whereas phasic firing is linked with events (e.g., reward, sensory
stimuli, and decision-making) and thought to regulate learning
and behavior (Rajkowski et al., 1994; Parikh and Sarter, 2008).
For sensory pathways, tonic encoding is favored during periods
of increased attention and is thought to be more optimal for
discrimination of sensory detail (Sherman, 2001a; Rodenkirch
et al., 2019). Conversely, bursting responses to sensory stimuli
are more likely when drowsy or inattentive and provide a strong
encoding that facilitates detection, potentially serving as a wake-
up call (Swadlow and Gusev, 2001; Weyand et al., 2001). It
is important to note that neuromodulatory systems are well
preserved over evolution, and the function of neuromodulatory
systems are similar in humans and other mammals such
as rodents (Avery and Krichmar, 2017). Indeed, the studies
discussed earlier confirm VNS affects sensory processing in both
rodents and humans.

Vagus Nerve Stimulation and the
Noradrenergic System
The LC is the primary source of NE in the forebrain (Sara,
2009). The LC exhibits constant tonic firing (1–5 Hz) that
regulates brain state (e.g., arousal) as well as intermediate phasic
burst spiking events (2–5 spikes at 10–20 Hz per burst) that
occur in response to salient sensory stimuli as well as when
decisions or responses are made (Devilbiss and Waterhouse,
2011). These two firing modes have been shown to produce
distinctly different modulations of the response properties of
sensory neurons (Devilbiss and Waterhouse, 2011). The LC
innervates multiple regions along the sensory pathway, including
the sensory thalamus and cortex (Morrison and Foote, 1986;
Simpson et al., 1997).

There is a large body of evidence showing that the LC-NE
system modulates sensory processing and perceptual learning
(Manunta and Edeline, 1997; Ego-Stengel et al., 2002; Hirata
et al., 2006; Doucette et al., 2007; Martins and Froemke, 2015;
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FIGURE 2 | Vagus nerve stimulation activates multiple global neuromodulatory systems that are known to influence sensory processing. BF, basal forebrain; DRN,
dorsal raphe nucleus; LC, locus coeruleus; LDT, laterodorsal tegmental nucleus; NTS, nucleus tractus solitaries; PPT, pedunculopontine tegmental nucleus; VTA,
ventral tegmental area.

McBurney-Lin et al., 2019; Waterhouse and Navarra, 2019).
Moreover, it is well documented that activation of the LC-NE
system immediately modulates the response of sensory neurons.
In vitro, NE has a depolarizing effect on auditory and visual
thalamic relay neurons that coincides with a suppression of
burst spiking (McCormick and Prince, 1988). This likely occurs
because NE depolarization prevents the extended hyperpolarized
periods needed to prime the calcium T-type channels responsible
for bursts (Sherman, 2001a). In vivo, tonic LC activation has
been found to reduce spontaneous activity of the somatosensory
thalamus, while facilitating sensory evoked activity, resulting in
an increase in signal to noise ratio (Hirata et al., 2006). Our team
has shown how tonic LC-NE activation enhances the accuracy of
encoded stimuli in the somatosensory thalamus by reducing the
fluctuating influence of the calcium T-type channels responsible
for bursting. Within the cortex, the LC-NE system can cause
either facilitation or inhibition with resulting effect specific to
the sensory modality, cell, and stimulation pattern (Devilbiss
and Waterhouse, 2004; Videen et al., 1984; Sato et al., 1989;
Vazey et al., 2018).

Vagus nerve stimulation’s ability to activate the LC-NE system
has long been hypothesized to underlie, in part, the clinical

benefits of VNS (Slater and Wang, 2021). VNS is thought
to activate the LC via the vagus nerve’s afferent projections
to the nucleus tractus solitarius (NTS) (Van Bockstaele et al.,
1999; Ruffoli et al., 2011). The NTS then sends an excitatory
signal to the LC, likely via the nucleus paragigantocellularis
(Ennis and Aston-Jones, 1988; Reyes and Van Bockstaele,
2006). Indeed, multiple studies have confirmed VNS readily
activates the LC-NE system in both animals and humans. In
rats, VNS delivered via an implanted cuff has been shown
to increase the activity of LC neurons as confirmed by
electrophysiological recordings under halothane (Groves et al.,
2005), chloral hydrate (Dorr and Debonnel, 2006), equithesin
(Manta et al., 2009a), and ketamine (Hulsey et al., 2017) as well
as by immunohistochemical biomarkers of short-term neuronal
activation (Cunningham et al., 2008). Similarly, multiple studies
have found that microdialysis samples taken from rats receiving
VNS exhibited increased NE concentration in the primary
hippocampus (Raedt et al., 2011), basolateral amygdala (Hassert
et al., 2004), and cortex (Roosevelt et al., 2006; Follesa et al.,
2007; Manta et al., 2013). Finally, the findings in animals seem
to be conserved in humans, as fMRI data from a study of adult
males with tinnitus indicated taVNS activates the NTS and LC
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(Yakunina et al., 2018). However, variations in VNS parameters
may affect how reliably VNS drives the LC-NE system, as
one study measuring NE concentration in the CSF of patients
receiving VNS as a treatment for depression failed to detect a
significant change (Carpenter et al., 2004).

In addition to direct evidence VNS activates the LC-NE
system, many effects of VNS are blocked if the LC-NE system
is impaired through either LC lesion or adrenergic receptor
blockers. For example, the anticonvulsive effect of VNS is
abrogated when hippocampal adrenergic receptors are blocked
(Krahl et al., 1998; Raedt et al., 2011). Further, VNS enhancement
of perforant path-CA3 synaptic transmission is blocked by
either electrical lesions of the LC or an adrenergic receptor
antagonist (timolol) (Shen et al., 2012). The antidepressant-
like effects of VNS in rats, as measured by feeding and
swim tests, have been shown to be blocked by lesion of
noradrenergic neurons (Furmaga et al., 2011; Grimonprez et al.,
2015). Immunotoxin depletion of norepinephrine was also
found to prevent VNS-driven enhancement of motor cortex
neuroplasticity (Hulsey et al., 2019).

Vagus Nerve Stimulation and Cholinergic
Systems
Cholinergic nuclei of the basal forebrain (BF) project to
the sensory processing regions of the thalamus (Kolmac and
Mitrofanis, 1999) and cortex (Ballinger et al., 2016; Jimenez-
Martin et al., 2021). Additionally, cholinergic nuclei of the
pontomesencephalic area, including the laterodorsal tegmental
nucleus (LDT) and pedunculopontine tegmental nucleus (PPT),
are a major source of ACh to the thalamus (Schofield et al.,
2011; Huerta-Ocampo et al., 2020). There are two distinct neuron
populations of the BF that differentiate in exhibiting either a
tonic (10–15 Hz) or a bursting (2–6 spikes/burst with bursting
events occurring at 0.3–2 Hz) firing pattern (Nuñez, 1996) which
influences arousal and attention. The response timing of both
types of BF neurons is influenced by sensory stimuli (Laszlovszky
et al., 2020) and linked with novelty, salience, and surprise
(Zhang et al., 2019).

Extensive work has shown the cholinergic system strongly
influences both sensory processing and perceptual learning across
multiple sensory modalities (Murphy and Sillito, 1991; Kilgard
and Merzenich, 1998; Verdier and Dykes, 2001; Linster and
Cleland, 2002; Bentley et al., 2004; Wilson et al., 2004; Furey
et al., 2008; Herrero et al., 2008; Pinto et al., 2013; Zhan et al.,
2013; Rothermel et al., 2014; Kim et al., 2016; Gratton et al.,
2017). Like the noradrenergic system, it is well documented
that activation of the cholinergic systems has immediate effects
on sensory processing. ACh applied in vitro to neurons of the
thalamic reticular nucleus, a subthalamic region involved in
sensory processing, causes hyperpolarization and induces burst
spiking (McCormick and Prince, 1986), likely due to extended
hyperpolarized periods priming the calcium T-type channels
responsible for burst spiking (Sherman, 2001a). ACh applied to
thalamic neurons of the primary visual and auditory pathways
was found to increase firing rate (Sillito et al., 1983; McCormick
and Prince, 1987), although a hyperpolarization effect has been

observed in thalamic neurons of the secondary (non-lemniscal)
auditory pathway (Mooney et al., 2004). Cholinergic modulation
of the sensory cortex can cause either facilitation or inhibition
with the resulting effect specific to the sensory modality, cell, and
stimulation pattern (Donoghue and Carroll, 1987; Metherate and
Weinberger, 1989; Metherate and Ashe, 1991; Jimenez-Martin
et al., 2021). In the visual cortex, BF stimulation has been shown
to enhance accurate encoding by inducing decorrelation and
increased reliability (Goard and Dan, 2009).

It has long been hypothesized that VNS activates the BF–ACh
system (Detari et al., 1983). VNS innervates the NTS (Ruffoli
et al., 2011) and projections from the NTS activate the BF
(Martin et al., 2022) in addition to the NTS projections that
activate the LC (Ennis and Aston-Jones, 1988; Van Bockstaele
et al., 1999; Reyes and Van Bockstaele, 2006). The LC also
projects to the BF (Berridge et al., 2003), suggesting VNS activates
the BF both directly through the NTS as well as indirectly
through the LC. Indeed, two separate studies investigating the
potential of VNS for inducing neuroprotection from cerebral
ischemia found that VNS enhanced protein levels of the nicotinic
acetylcholine receptor alpha7 subunit (a7nAchR) in the ischemic
penumbra (Jiang et al., 2014; Lu et al., 2017). Recently, researchers
performed in vivo calcium imaging of the auditory cortex and
found VNS evoked activity of cholinergic axons innervating the
region (Mridha et al., 2021). Further, they found the intensity
of the evoked activity covaried with VNS intensity. In addition
to this direct evidence that VNS rapidly activates the cholinergic
system, multiple studies have shown ACh modulation of sensory
pathways is a critical component underlying the plasticity effect
induced by repeatedly pairing a burst of VNS with a sensory
stimulus. For example, the effects of VNS on sensory processing
in the auditory cortex were found to be blocked by a muscarinic
antagonist (Nichols et al., 2011). Further, lesioning the NB in rats
was shown to abrogate the well-documented ability of VNS pulses
repeatedly paired with a movement to enhance motor cortex
plasticity (Hulsey et al., 2016).

Vagus Nerve Stimulation and
Serotonergic Systems
The dorsal raphe nucleus (DRN) is a major source of serotonin
(5-HT) to the forebrain (Jacobs and Fornal, 1999). Neurons of
the DRN consistently exhibit a continuous slow tonic firing rate
(1–2 Hz) with little variation in inter-spike-interval (Trulson
and Jacobs, 1979; Mlinar et al., 2016). Response of the DRN is
related to both reward and punishment (Ranade and Mainen,
2009; Li et al., 2016; Ren et al., 2018) as well as linked to sensory
input (Rasmussen et al., 1984; Waterhouse et al., 2004). The
DRN innervates both cortical and subcortical regions of the
sensory processing pathways (Kirifides et al., 2001). There is
also a large body of work suggesting DRN activity modulates
sensory processing and perception (Hurley and Pollak, 1999;
Kähkönen et al., 2002; Dacks et al., 2009; Hurley and Hall,
2011; Jaber et al., 2014; Kapoor et al., 2016; Seillier et al., 2017).
5-HT has been shown to have instant effects on neurons of
the sensory pathways. For example, 5-HT has been shown to
cause excitation of thalamic perigeniculate and reticular nucleus
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neurons (McCormick and Wang, 1991; Funke and Eysel, 1993).
In the inferior colliculus, an auditory region of the midbrain,
5-HT was found to modulate responses in both a cell and
auditory stimulus specific manner (Hurley and Pollak, 1999). In
the primary visual and auditory relay neurons of the visual and
auditory pathways, 5-HT has been shown to have an inhibitory
effect (Marks et al., 1987; Kayama et al., 1989; Monckton and
McCormick, 2002). Additionally, activation of the DRN has been
found to increase signal to noise ratio of the olfactory cortex
(Lottem et al., 2016).

Vagus nerve stimulation may activate the DRN indirectly
by first activating the LC which then projects to the DRN
(Kim et al., 2004). This hypothesis is supported by a study in
rats anesthetized with sodium pentobarbital that found VNS
increased DRN neurons’ firing rates, but this causal relationship
was lost once the LC was lesioned (Manta et al., 2009a). Multiple
studies have also shown that VNS increases DRN firing rate as
measured via extracellular electrophysiological recordings (Dorr
and Debonnel, 2006; Manta et al., 2009b). However, one study
found only a subset of VNS patterns they tested increased
DRN activity suggesting VNS activation of the DRN may be
dependent on VNS parameters (Manta et al., 2012). In a follow-
up work, the same group performed in vivo microdialysis in
rats following chronic duty-cycled VNS and found increased
5-HT concentration in the DRN but not the hippocampus
nor prefrontal cortex (PFC) (Manta et al., 2013). In contrast
to these studies supporting VNS’ ability to activate the DRN,
another study analyzing microdialysis measurements in different
brain regions of rats reported that neither vagotomy or chronic
unilateral VNS had an effect on 5-HT levels in the ventral
tegmental area (VTA), nucleus accumbens (NAc), PFC, and
striatum (Ziomber et al., 2012). These conflicting findings could
potentially be related to the fact that electrical stimulation was
delivered to an abdominal branch of the vagus nerve in this study.
Further suggesting a more complex interplay between the VNS
and DRN, a study analyzing immunohistochemical biomarkers
of both short-term and long-term neuronal activation suggests
chronic VNS does not induce DRN activation until stimulation
has occurred across multiple days (Cunningham et al., 2008).

In addition to direct evidence that VNS increases activity of
the serotonergic system, functionality of serotonergic neurons
has been shown to be critical for multiple documented effects
of VNS. For example, the earlier-mentioned study on the
antidepressant-like effects of VNS in rats, which used feeding and
swim tests as indexes of depression, found the beneficial effects
of VNS were also precluded by administration of a neurotoxin
for serotonergic neurons (Furmaga et al., 2011). Additionally,
a separate study found immunotoxin depletion of serotonin
prevented the well-researched ability of repeatedly pairing a VNS
burst with a movement to enhance motor cortex neuroplasticity
(Hulsey et al., 2019).

Vagus Nerve Stimulation and
Dopaminergic Systems
The VTA and Substantia Nigra pars Compacta (SNc) are primary
sources of dopamine (DA) to the forebrain (Poulin et al., 2018)

and, respectively, they modulate cognition and movement
(Mercuri et al., 1992). The VTA has been shown to innervate
the sensory cortices (Hosp et al., 2019). The VTA exhibits both
tonic (1–8 Hz) and burst firing (2–5 spike bursts with bursting
events occurring at 0.1–1 Hz) with firing rates varying across
cell types (Kiyatkin and Rebec, 1998; Hyland et al., 2002; Lodge
and Grace, 2006). Tonic firing rate likely modulates brain state
(e.g., motivation and arousal) and bursting events likely encode
for salient stimuli (e.g., reward and sensory stimuli) (Dahan
et al., 2007). Although the body of work investigating the effects
of DA on sensory processing is limited, there is evidence it
rapidly modulates sensory processing and response (Ungless,
2004; Govindaiah et al., 2010; Woolrych et al., 2021).

Although previous work demonstrated the LC projects to the
VTA (Mejías-Aponte et al., 2009), many studies also suggest
VNS effects on DA circuitry may be dependent on other factors
besides VNS directly increasing VTA firing rates. For example,
one study that performed in vivo microdialysis of rats following
chronic duty-cycled VNS found an increase in DA in the PFC
and NAc but a decrease in VTA neurons’ firing rates as measured
with electrophysiological recordings (Manta et al., 2013). A lack
of VNS-induced changes in VTA firing and bursting rates was
also reported in a separate study (Perez et al., 2014). Studies
analyzing brain sections from rats that received chronic VNS
have also reported varied results. One such study found decreased
DA levels in the VTA, NAc, PFC, and striatum (Ziomber
et al., 2012); however, to properly interpret these results it
should be mentioned that electrical stimulation was delivered
to an abdominal branch of the vagus nerve in this study. Two
other studies performing a similar analysis found VNS induced
changes to the elemental composition of dopamine-related brain
structures (Szczerbowska-Boruchowska et al., 2012) and to the
lipids and proteins within the VTA, NAc, SNc, striatum, dorsal
motor nucleus of vagus, and the motor cortex (Surowka et al.,
2015). A more recent study in awake rats found optogenetic VNS,
which carries no risk of unintentional activation of surrounding
nerves, increased the firing rate of dopaminergic VTA neurons as
measured via in vivo imaging (Fernandes et al., 2020). This same
study also found lesioning the hepatic branch of the vagus nerve
abrogated the increase in VTA neuron activity usually observed
following ingestion.

DISCUSSION: TRANSLATIONAL
APPLICATIONS OF USING VAGUS
NERVE STIMULATION TO RAPIDLY
MODULATE SENSORY PROCESSING

Accurate perception is required for daily life and independent
living. However, dysfunction or degradation of central sensory
processing pathways can rapidly impair sensory ability. The
studies referenced here implicate VNS as a potential tool for
modulating sensory processing. Accordingly, VNS presents great
potential as a targeted treatment for impaired senses arising from
central sensory processing dysfunction. Many clinical causes
of impaired central sensory processing exist including multiple
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neurodegenerative conditions and neurological disorders.
Impaired sensory processing reduces sensory acuity, increases
likelihood of miscommunication, and causes misperceptions
that potentially lead to costly human error. Further, the link
between human performance and sensory ability suggests there
may be commercial interest in enhancing sensory processing
in addition to clinical. This translation potential has spurred
clinical trials looking at the effect of VNS on auditory perception
(e.g., NCT04812015 at www.clinicaltrials.gov). VNS methods of
enhancing sensory processing have great translation possibility
because cervical transcutaneous VNS (ctVNS) and taVNS have
both been suggested to be safe and effective methods of non-
invasively activating the vagus nerve in humans (Frangos and
Komisaruk, 2017; Mwamburi et al., 2017; Reuter et al., 2019;
McIntire et al., 2021). In light of this potential, our research team
is currently conducting pilot clinical studies investigating the
effects of continuous tonic VNS on vision, hearing, and touch.

Age-related impairment of central sensory processing is
particularly devastating to the elderly as it interferes with their
ability to communicate (Tun et al., 2012; Sardone et al., 2019),
accelerates cognitive decline (Hewitt, 2017), and is linked with
Alzheimer’s disease (AD) (Panza et al., 2015). Treatments exist
for age-related sensory receptor damage (Barriga-Rivera et al.,
2017; Ferguson et al., 2017; Higuchi et al., 2017; Moshirfar
et al., 2017). However, there is a stark lack of solutions
addressing the co-occurring age-related impairment of central
sensory processing (Humes et al., 2013; Humes, 2015; Engel-
Yeger and Rosenblum, 2017; Lesica, 2018). For example, as
evidence of this age-related decline in sensory processing, studies
have shown that elderly individuals with normal audiograms,
indicating normally functioning auditory receptors, still have
decreased ability to discriminate detailed features of sensory
stimuli, such as speech intelligibility over noise (Fullgrabe et al.,
2014; Babkoff and Fostick, 2017). Similarly, aging is thought to
degrade visual (Brannan, 1992; Wiegand et al., 2014) and tactile
processing (Engel-Yeger et al., 2012). The ability to improve
or restore sensory processing clarity with VNS, could therefore
positively impact a large segment of society by helping them
remain social and active through improving their ability to
communicate clearly and walk safely. Many researchers share the
belief that different forms of VNS could help elderly cognition

and perception as suggested by the many ongoing clinical studies
investigating that topic (e.g., Clinical Trials NCT04396249,
NCT04276805, NCT03359902, NCT04908358, NCT04276805,
and NCT03989375 at www.clinicaltrials.gov).

Attention deficit hyperactivity disorder (ADHD) has been
linked with impaired sensory processing evidenced by poor
frequency discrimination ability (Sutcliffe et al., 2006; Shimizu
et al., 2014). Moreover, inattention is linked with increased
bursting activity in the sensory thalamus, a type of neural
activity our team’s research has found is suboptimal for encoding
details and features of sensory stimuli therefore causing loss of
sensory acuity (Rodenkirch et al., 2019). Further, thalamocortical
bursting in response to sensory stimuli is thought to serve as a
“wake-up-call” in response to salient stimuli, suggesting bursts
are distracting (Sherman, 2001b). Recently, poor intrathalamic
processing due to abnormal TRN responses has been suggested
as a cause of ADHD (Wells et al., 2016). ADHD treatments
(including stimulants) work, in part, via amplifying NE effects
(Arnsten and Dudley, 2005; De Crescenzo et al., 2018; Schneider
et al., 2019). Methylphenidate, a common treatment for ADHD,
has been shown to enhance early-stage sensory processing
through increasing DA and NE concentration in the brain
(Navarra et al., 2017). Previous work shows that VNS activates
the locus coeruleus-norepinephrine (LC-NE) system (Hulsey
et al., 2017), and our work shows VNS suppresses noisy bursting
activity along sensory pathways. Taken together, these findings
suggest VNS could be potentially used to treat the sensory
processing dysfunction linked with ADHD.
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