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Abstract

Perceptual decision-making is a dynamic cognitive process and is shaped by many factors, including behavioral state, reward
contingency, and sensory environment. To understand the extent to which adaptive behavior in decision-making is dependent
on pupil-linked arousal, we trained head-fixed rats to perform perceptual decision-making tasks and systematically manipu-
lated the probability of Go and No-go stimuli while simultaneously measuring their pupil size in the tasks. Our data demon-
strated that the animals adaptively modified their behavior in response to the changes in the sensory environment. The
response probability to both Go and No-go stimuli decreased as the probability of the Go stimulus being presented
decreased. Analyses within the signal detection theory framework showed that while the animals’ perceptual sensitivity was
invariant, their decision criterion increased as the probability of the Go stimulus decreased. Simulation results indicated that
the adaptive increase in the decision criterion will increase possible water rewards during the task. Moreover, the adaptive
decision-making is dependent on pupil-linked arousal as the increase in the decision criterion was the largest during low pu-
pil-linked arousal periods. Taken together, our results demonstrated that the rats were able to adjust their decision-making to
maximize rewards in the tasks, and that adaptive behavior in perceptual decision-making is dependent on pupil-linked
arousal.

NEW & NOTEWORTHY Perceptual decision-making is a dynamic cognitive process and is shaped by many factors. However,
the extent to which changes in sensory environment result in adaptive decision-making remains poorly understood. Our data
provided new experimental evidence demonstrating that the rats were able to adaptively modify their decision criterion to maxi-
mize water reward in response to changes in the statistics of the sensory environment. Furthermore, the adaptive decision-mak-
ing is dependent on pupil-linked arousal.

adaptive decision-making; behavioral adaptation; drift diffusion model; Go/No-go tactile discrimination task; pupil-linked arousal

INTRODUCTION

Adaptive behavior is essential for animals to survive in an
ever-varying environment. In perceptual decision-making
tasks, sensory information is accumulated over time in the
central nervous system, eventually leading to a decision to
choose one of the alternatives and generating motor com-
mands to indicate the animal’s choice (1–6). The perceptual
decision-making process is shaped by many factors, includ-
ing brain state, the gain/loss of each possible decision, moti-
vation, task engagement, and external sensory environment
(7–19). For example, Waiblinger et al. (20) reported that, in a
tactile detection task, rats adjusted their behavioral strategy

to maintain a constant payoff in response to changes in the
probabilistic distribution of whisker deflection amplitudes.

Multiple neuromodulatory systemsmay exert heavy influ-
ences on the cognitive control of adaptive decision-making
(21, 22). Previous work has suggested that tonic activation of
the locus coeruleus-norepinephrine (LC-NE) system plays a
critical role in regulating decision-making processes with
regard to exploring alternatives or exploiting current resour-
ces based on the uncertainty of available information (23,
24). On the contrary, phasic activation of the LC-NE system
is thought to reset functional networks, and therefore facili-
tate their reorganization to enable behavioral adaptation in
decision-making (25). It has been postulated that the activity
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of the cholinergic system is related to expected uncer-
tainty (24). The cholinergic system exerts influences on
decision-making possibly through the widespread ascend-
ing projections from the basal forebrain to the cortex (26–
31). Pharmacologically blocking muscarinic receptors sup-
pressed risky decision-making in rats performing a gam-
bling task (32). Nonluminance-mediated changes in pupil
size have been successfully used to track rapid fluctua-
tions in cortical state (33, 34) and, thus, are considered as a
noninvasive readout of activation of central arousal cir-
cuits related to pupil size (i.e., pupil-linked arousal system).
Although the exact neural circuitry mediating pupil-linked
arousal remains not fully understood, several lines of evidence
suggest that multiple neuromodulatory systems, including
the LC-NE and cholinergic systems, contribute to pupil-linked
arousal to different extents (35–37). However, how adaptive
decision-making in response to a varying sensory environ-
ment depends on pupil-linked arousal remains unclear.

To address this question, we systematically manipulated
the statistics of sensory environment in rats performing a
perceptual decision-making task. The fraction of trials in
which the Go stimulus was presented (i.e., Go stimulus trials)
was randomly selected from 0.8, 0.5, or 0.2 for each session.
Our data indicated that the animals adjusted their behavior
in response to the changes in the sensory environment in an
attempt to maximize water rewards. Interestingly, analysis
within the signal detection theory framework revealed that
the perceptual sensitivity did not vary across the three para-
digms. However, the decision criterion increased as the frac-
tion of Go stimulus trials decreased. Simulation results
confirmed that to maximize water rewards, the decision cri-
terion ought to increase if the fraction of Go stimulus trials
decreases. Therefore, the observed changes in decision crite-
rion in the animals are likely to reflect adaptive decision-
making. By comparing the changes in decision criterion at
different pupil-linked arousal levels, we found that the slope
of increase in decision criterion across the three paradigms
with respect to the decrease in the fraction of Go stimulus tri-
als was closer to the optimal slope during low pupil-linked
arousal periods. Together, our results demonstrated that the
rats were capable of adapting their decision-making to
maximize rewards in response to changes in the sensory
environment. Moreover, this adaptive behavior in perceptual
decision-making was dependent on pupil-linked arousal.

MATERIALS AND METHODS
All experimental procedures were approved by the Columbia

University Institutional Animal Care and Use Committee
and were conducted in compliance with NIH guidelines.
Behavioral studies were conducted using five female
rats (3 Long Evans and 2 Sprague–Dawley, Charles River
Laboratories, Wilmington, MA; �225–275 g at the time of
implantation). Animals were single-housed after implan-
tation in a dedicated housing facility, which maintained
a 12-h light and dark cycle.

Surgical Implantation

The rodent surgery and implantation of headplates have
been described in detail previously (5, 38–40). In brief, in
aseptic surgeries, anesthesia was induced with a ketamine/

xylazine cocktail (80/5 mg/kg, ip) or isoflurane (1–3% with a
nose cone). Ophthalmic ointment was applied to the eyes
throughout the surgery to prevent cornea drying. After the
scalp was shaved and the hair was removed with depilatory
cream, animals were placed in a stereotaxic device using
nonpenetrating ear bars (David Kopf Instruments, Tujunga,
CA). Buprenorphine (buprenex, 0.03mg/kg, sc) was adminis-
tered as an analgesic, and Ringers solution (2 mL, sc) was
also administered to prevent dehydration. After exposing
and cleaning the skull, 8–10 burr holes were drilled in the
skull, and stainless steel screws (0–80 thread, McMaster
Carr, Robbinsville, NJ) were inserted to anchor a headplate
(14, 41). The wound was then closed with surgical sutures
and treated with antibiotic ointment. Antibiotics (Baytril, 5
mg/kg sc) and extra analgesics (ketoprofen, 5 mg/kg sc) were
administered for 5 days postoperatively to minimize the risk
of infection. The animals began water restriction and subse-
quent training following approximately 10 days of recovery
from implantation surgery.

Behavioral Procedures

Behavioral apparatus.
All behavioral training was conducted in a standard sound
and light attenuation chamber (Med Associates, St. Albans,
VT). During training, the animals were head-fixed with a cus-
tom-made apparatus, in which two pneumatic cylinders on
either side of the head were fixed with ball bearings aligned
with grooves in the headplate to hold the animals’ heads (14,
42). A 1-mL syringe body, which served to deliver water, was
mounted to a flexible beam and placed directly in front of
the animal. A piezoelectric force sensor was bonded to the
flexible beam to measure voltage swings resulting from ani-
mals licking the syringe. The sensor’s output was sampled by
a data acquisition (DAQ) card (PCI-6259, National Instruments,
Dallas, TX) at 1 kHz.

Precise tactile stimuli were delivered via a multilayer pie-
zoelectric bending actuator (PL140; Physik Instrumente,
Germany) driven by a high-voltage amplifier (OPA452; Texas
Instruments, Dallas, TX). Whiskers were placed in a short
glass capillary pipette approximately 15 mm long with
an outer diameter of 1 mm and an inner diameter of 0.5 mm
(A-M Systems, Carlsborg, WA). The pipette was bonded to
the end of the piezo actuator and placed 8 mm away from
the right snout. The whisker that received tactile stimuli was
chosen with respect to its thickness between C2, C3, and D2,
and the same chosen whisker was used in all behavioral ses-
sions for each animal. The chosen whisker was slightly
trimmed to facilitate the insertion into the pipette.

To mask possible auditory cues, a buzzer (bandwidth: 16
Hz–10 kHz) delivering white noise-masking sound was
placed next to the whisker stimulator. Onset tone (6 kHz),
reward tone (3 kHz), and timeout tones (16.5 kHz) were deliv-
ered by a speaker installed in the chamber. Animals were
remotely monitored with a CCD camera, and an infrared
LED was placed in the chamber for illumination during
the task. Control of the behavioral task and sampling of ani-
mals’ behavioral responses were performed by custom-pro-
grammed software running on a MATLAB xPC target real-
time system (MathWorks, Natick, MA). All behavioral data
were sampled at 1 kHz and logged for offline analyses.
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Tactile stimulus.
Whisker stimuli used were sinusoidal waveforms of 8 Hz and
4 Hz (0.5 s, 1 mm amplitude), with the 8 Hz stimulus ran-
domly assigned as the Go stimulus and the 4 Hz stimulus as
the No-go stimulus. The probability of the Go stimulus being
presented was designated as either 80%, 50%, or 20% for
each session.

Pupillometry recording.
Recording of the pupil contralateral to the whisker deflec-
tion was made using a custom-made pupillometry system
(43), which was triggered at 20 Hz by the xPC target real-
time system (MathWorks, MA) that controlled the behav-
ioral task. At the beginning of each behavioral session, the
ambient luminance in the behavioral chamber was adjusted
to make the animal’s pupil size to be at an intermediate
level, resulting in similar mean pupil sizes and pupil fluctu-
ations across the three paradigms (Supplemental Fig. S1:
https://doi.org/10.6084/m9.figshare.24520669.v1). Pupil images
were streamed to a high-speed solid-state drive for offline anal-
ysis. To extract pupil size, the pupil contour was segmented
using the DeepLabCut toolbox (45). A training set consist-
ing of 200 frames recorded across different sessions was
selected. Each frame had 12 evenly distributed points la-
beled surrounding the pupil manually, and the images were
cropped to enable a higher training accuracy. The ResNet50
deep network was used to analyze the video clips from all
sessions after the training. The automatically labeled points
were fit with circular regression and the pupil size was com-
puted as the area bounded by the contour. 5% of all images
were randomly selected for inspection to validate the accu-
racy of the software. Pupil sizes during blinks were interpo-
lated with values before and after blinks (43, 46). The pupil
size was low-pass filtered with a fourth-order noncausal fil-
ter with a cutoff frequency of 3.5 Hz.

Training and the Go/No-go discrimination task.
Water deprivation schedule and procedures of head-fixation
habituation were the same as our previous work (5, 14, 18).
Briefly, restriction of access to water was used to motivate
animals during the tasks. However, during the behavioral
task, correct responses to a Go stimulus were rewarded with
�60 μL aliquots of water. Because the number of possible
rewarding trials (i.e., Go stimulus trials) was different across
the three paradigms, supplemental water was given before
returning the animals to the animal facility to ensure their
daily water intakes were the same across all training days.
The weight of the animals was measured and logged imme-
diately after the task.

The onset of each trial was indicated by a brief “trial onset
tone” (300 ms, 6 kHz), followed by a random delay (1 to 3.5 s
uniform distribution) (Fig. 1B). To discourage the animal
from impulsively licking, the last 1 s of the waiting period
was a designated “no lick” period, during which any prema-
ture licks would result in an additional delay in stimulus pre-
sentation pulled from a 1–2.5 s uniform distribution (38, 47).
Since the delay of stimulus presentation resulting from pre-
mature licks could be repeated indefinitely, our rats usually
learned to suppress their impulsive licking during the early
stage of behavioral training. The stimulus for each trial could
be either a Go stimulus or a No-go stimulus, but the fraction

of Go stimulus trials was randomly selected from 0.8, 0.5,
and 0.2 for each session, resulting in three behavioral para-
digms. Licking within a window of opportunity (1.3 s) follow-
ing a Go stimulus resulted in a brief “reward tone” (300ms, 3
kHz) accompanied by a water reward, whereas licking within
the window of opportunity following a No-go stimulus trig-
gered a “timeout tone” (5 s, 16.5 kHz) which began a 10-s
timeout period. Correct rejection and miss behavioral out-
comes were neither rewarded nor penalized. A 6-s inter-trial
period followed the end of the window of opportunity for
correct rejection and miss trials, water reward for hit trials,
and timeout period for false alarm trials. Across all five ani-
mals, 260 sessions were performed and 70,516 trials were
recorded. Pupillometry was recorded in 165 sessions.

Data Analysis

All data analyses were first conducted in individual ses-
sions. Grand averages and standard errors of means were
then calculated across sessions for analysis and presenta-
tion. For each session, the first 20 trials were excluded due to
the time required to adjust the pupillometry camera.

Behavioral performance.
Response probabilities for each session were calculated as
the hit rate (HR, i.e., number of hit trials/number of Sþ tri-
als) and false alarm rate (FAR, i.e., number of false alarm tri-
als/number of S� trials). These were used to calculate
perceptual sensitivity (d0) and decision criterion as:

d0 ¼ W�1 Hit rateð Þ �W�1 FA rateð Þ;

Criterion ¼ �ðW�1 Hit rateð Þ þ W�1 FA rateð ÞÞ=2;
where W�1 is the inverse of the cumulative Gaussian
distribution.

For analyzing response probabilities, perceptual sensitiv-
ity, and decision criterion versus percent of maximum base-
line, each session’s baseline range was first computed and
then evenly broken into 20 bins, each trial was sorted into
one of the bins, and HR, FAR, d0, and criterion were calcu-
lated for each bin. The log-linear approach was utilized to
allow for calculating d0 and criterion in bins where HR or
FAR equaled 1 or 0, where 0.5 was added to the number of
hits and FAs and 1 was added to the number of Sþ and S�
presentations before calculating HR and FAR (48).

Reaction times were computed as the time from stimulus
onset, which is when the window of opportunity began, until
the first lick response within the window of opportunity.
Reaction times were only computed when a response was
logged within the window of opportunity, i.e., for hit and
false alarm trials, but not miss or correct rejection trials.

Pupil dynamics.
Pupil sizes were first Z-scored for each session before further
analyses. Pupil sizes were aligned by stimulus onset.
Stereotypical pupil responses for each behavioral outcome
were calculated as the average pupil size at each time point
0.5 s preceding stimulus onset to 5 s following stimulus onset.
Average baselines and dilations were calculated from these
averaged stereotypical responses for each behavioral outcome
for each session. Baseline pupil sizes were computed as the av-
erage of the pupil sizes in the 0.5 s preceding the stimulus,
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whereas dilations were calculated as themean value of the pu-
pil sizes from stimulus onset to 5 s post-stimulus onset, minus
the pupil baseline. To calculate the percent of maximum pupil
baseline, all baselines were normalized for each session.

%of MaximumPupil Baseline

¼ Pupil Baselinet � Pupil Baselineminimum

Pupil Baselinemaximum � Pupil Baselineminimum
:

Trials were considered in low, medium, or high pupil-
linked arousal level if their baseline pupil size was within
<33%, 33%–66%, or >66% of the maximum baseline pupil
size of the session.
Simulation to determine optimal decision criterion.

To determine the optimal decision criterion, we simulated
the behavior of rats with different decision criterion in the
three paradigms based on the signal detection theory and
computed water reward per unit time for each decision crite-
rion in each paradigm. For each simulated session, the prob-
ability of Sþ trials was set at either 20%, 50%, or 80%. For a
given decision criterion, on an Sþ trial, a random number
was drawn from a normal distribution with mean ¼ 0.52,
which is the mean perceptual sensitivity across the three
paradigms, and variance ¼ 1. If the random number was
greater than the decision criterion, a hit was logged. Otherwise,

a miss was logged. For a No-go trial, a random number was
drawn for a normal distribution with a mean of 0 and a var-
iance of 1. Either a false alarm or correct rejection was logged,
depending on whether the random number was greater than
the decision criterion. The duration of a hit trial was composed
of a random waiting period (from a 1–3.5 s uniform distribu-
tion), a mean response time, and a 6-s inter-trial interval,
whereas the duration of a miss or correction rejection trial is
composed of a random waiting period (from a 1–3.5 s uniform
distribution), a 1.3 s of window of opportunity and a 6-s inter-
trial interval. The duration of a false alarm trial is the sum of a
random waiting period (from a 1–3.5 s uniform distribution), a
mean response time, a 10 s timeout, and a 6-s inter-trial inter-
val. For each paradigm, we simulated 15,000 trials for each de-
cision criterion, and the decision criterion leading to the
maximal water reward per unit time was considered the opti-
mal decision criterion. Note that water rewards resulted only
from hit responses. We repeated the simulation 20 times to
estimate the variance of the optimal decision criterion for each
paradigm.
HDDM modeling. Hierarchical drift diffusion models

(HDDMs) were used to quantify possible differences in the
parameters of decision-making across the three behavioral
paradigms (49). We compared four DDM models with vari-
ous parameter constraints (3, 5, 50). The first model assumed
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Figure 1. Behavioral performance and pupil dynamics during a tactile decision-making task. A: experimental setup. B: the diagram of a Go/No-go percep-
tual decision-making task. C: hit rate was significantly higher than false alarm rate in sessions where the probability of the Go stimulus is 50%. Student’s t
test. Each color denotes an animal. 103 sessions from five animals. D: pupil dynamics around stimulus presentation associated with the four behavioral
outcomes. E: baseline pupil size associated with the four behavioral outcomes. ANOVA test. F: pupil dilation associated with the four behavioral out-
comes. ANOVA test. 56 sessions from five animals.
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an unbiased starting point, i.e., the start point is the middle
of the decision boundary 0.5a or z ¼ 0.5 (Fig. 6A). For both
Go and No-go conditions, the absolute value of the drift rate
is the same. The second model assumed that the starting
point can be biased, but that the absolute value of the drift
rate is the same for both Go and No-go conditions. The third
model assumed an unbiased starting point just like the first
model, but the drift rate was allowed to be different between
the Go and No-go conditions. The fourth model assumed bi-
ased starting points and different drift rates for the Go and
No-go conditions.

Tominimize the risk of overfitting, we calculated the devi-
ance information criterion (DIC) value for each model.
Because DIC measure is a tradeoff between goodness of fit
and number of free parameters for Bayesian models, we only
considered the model with the least DIC as the optimal fit.
Each parameter of the model had three group-level distribu-
tions corresponding to the three behavioral paradigms and
individual-level distributions for each animal.

RESULTS
To test how animals adaptively change their behavior in

perceptual decision-making tasks in response to changes in a
sensory environment, we trained head-fixed rats to perform
tactile decision-making tasks using a Go/No-go discrimina-
tion paradigm (Fig. 1A) (14, 18). In these tasks, the rats were
required to make decisions to respond or withhold response
after a tactile stimulus was presented (Fig. 1B). In the initial
training sessions, Go stimulus (Sþ stimulus, 0.5 s 8 Hz
whisker stimulation), which the animal was trained to
respond to for rewards, was randomly presented in 50% of tri-
als, whereas No-go stimulus (S� stimulus, 0.5 s 4 Hz whisker
stimulation), to which the animal was trained to withhold
response to avoid time-out, was presented in the rest of the
trials. Animals had significantly higher response probability
to Sþ than to S� stimulus in these sessions (0.72 ± 0.019 vs.
0.58 ± 0.02, P < 7.6e-07, paired t test, means ± SE; error bars
indicate 1 SE unless otherwise noted, Fig. 1C), indicating that
the animal understood the requirement. Moreover, consistent

with our previous work, the pupil size of the rats fluctuated
throughout the sessions. The pupil dynamics around stimulus
presentation were different across the four possible behav-
ioral outcomes (i.e., hit, correct rejection, false alarm, miss)
(Fig. 1, D and E). Baseline pupil size before stimulus onset was
higher for hit and false alarm trials than for correct rejection
and miss trials (hit: 0.08 ± 0.023; correct rejection: �0.085 ±
0.036, false alarm: 0.074 ± 0.027, miss: �0.14 ± 0.07, P ¼
0.0003, ANOVA test). Task-evoked pupil dilation was largest
for hit trials, followed by false alarm trials, miss trials, and cor-
rect rejection trials (hit: 0.156 ± 0.015; false alarm: 0.096 ±
0.018; miss: 0.07 ± 0.034; correct rejection: 0.0095 ± 0.022;
P¼ 0.003; ANOVA test).

To test whether the animals adaptively changed their
behavior in response to changes in sensory environment, we
systematically manipulated the statistics of sensory signals.
In our experiments, we used three paradigms in which frac-
tions of Sþ trials, i.e., trials on which Sþ stimulus was pre-
sented, were set at 20%, 50%, and 80%. Each session was
randomly assigned with one paradigm and its corresponding
fraction of Sþ trials. We found that animals adaptively
changed their response rate in response to changes in the
fraction of Sþ trials for each session (Fig. 2A). In general,
both hit rate and false alarm rate decreased as the fraction of
Sþ trials decreased from 80% to 20% (0.8574 ± 0.0021 vs.
0.723 ± 0.002 vs. 0.552 ± 0.003, P < 9e-16, ANOVA test; false
alarm rate: 0.7622 ± 0.0025 vs. 0.578 ± 0.002 vs. 0.398 ±
0.003, P < 1.9e-22 ANOVA test) (Fig. 2B). Using the signal
detection theory framework (39, 41, 51, 52), we found that the
perceptual sensitivity of the animals was not affected by the
changes in fraction of Sþ trials, as there was no significant
difference across the three paradigms with different frac-
tions of Sþ trials (0.536 ± 0.042 vs. 0.510 ± 0.029 vs. 0.518 ±
0.045, P ¼ 0.88, ANOVA test) (Fig. 2C). However, we found
that the animals systematically adjusted their decision crite-
rion frommore liberal (i.e., more negative decision criterion)
to more conservative (i.e., less negative decision criterion)
in responses to the decrease in the fraction of Sþ trials
(�1.139 ± 0.08 vs. �0.483 ± 0.064 vs. 0.045 ± 0.085, P < 3.1e-
20, ANOVA test) (Fig. 2D). These phenomena held for both

A B

5
0.3

0.4

0.5

0.6

0.7

-2

-1

0

1

0

0.5

1

1.5

D
ec

is
io

n
cr

ite
rio

n
R

ea
ct

io
n

tim
e 

(s
)

R
es

po
ns

e
pr

ob
ab

ilit
y

Behavioral sessions 

0.2

0.4

0.6

0.8

1
FA

10 15 20

Pe
rc

ep
tu

al
se

ns
iti

vi
ty

Hit

FA Hit
0

0.2

0.4

0.6

0.8

1

R
es

po
ns

e 
pr

ob
ab

ili
ty

FA Hit FA Hit

C D

Fraction of S+ trials
80% 50% 20%

Fraction of S+ trials:
80%
50%
20%

Hit rate: P<9e-16
FA rate: P<1.9e-22

-2

-1

0

1

2

Fraction of S+ trials
80% 50% 20%

D
ec

is
io

n 
cr

ite
rio

n 

P<6.9e-17

0

1

2

Fraction of S+ trials
80% 50% 20%

P
er

ce
pt

ua
l s

en
si

tiv
ity

P=0.88
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strains and individual rats: all rats exhibited consistent
increase in decision criterion along with decrease in the frac-
tion of Sþ trials while the changes in their perceptual sensi-
tivity were mixed (Supplemental Fig. S2: https://doi.org/
10.6084/m9.figshare.24520669.v1).

Because animals only received water rewards on hit trials
during the task, animals could accumulate less water intake
in sessions with the fraction of Sþ trials being 0.2, compared
with the other two paradigms. Although we gave each ani-
mal supplemental water right before we returned them to
the animal facility on each training day to ensure they had
the same daily water intake across sessions with different
paradigms, it was still possible that the difference in level of
thirst during the task may have resulted in the changes in
the response probability to both Go and No-go stimuli.
However, if the animals were thirstier, it would be plausible
that they should have high response rates in an attempt to
get more water. However, this was contrary to what we
experimentally observed (Fig. 2B). To further rule out this
possibility, we calculated the percent of trials in which the
animal impulsively licked (i.e., licked between trial onset
tone and stimulus presentation). We reasoned that if animals
were thirstier in sessions where 20% of the trials were Sþ tri-
als, they would tend to lick more impulsively, leading to a
higher impulsive licking rate. However, our data suggested
that this was not the case. The fraction of impulsive licking
trials was significantly smaller for sessions where 20% of the
trials were Sþ trials, compared with the other two para-
digms (0.174 ± 0.019 vs. 0.134 ± 0.0106 vs. 0.062 ± 0.0055,
P < 1.06e-8, ANOVA test) (Fig. 3A), suggesting that the
changes in response probability resulted from cognitive
processing in responses to changes in probability of Sþ tri-
als, rather than the level of thirst. Supporting this notion, we
found that the reaction time monotonically increased with
the decrease in fraction of Sþ trials (0.4838 ± 0.012 s vs.
0.594 ± 0.011 s vs. 0.702 ± 0.011 s, P < 1.82e-29, ANOVA test)
(Fig. 3B). Furthermore, decision criterion was positively cor-
related with reaction time (P < 4.23e-25) (Fig. 3C). As we
expected, our data showed that decision criterion was nega-
tively correlated with percent of impulsive licking trials (P <
2.23e-15) (Fig. 3D). Taken together, these results suggested

that the adaptive behavior of the animals that we observed
in our experiments was due to higher-level cognitive proc-
essing of the statistics of sensory environment, rather than
low-level physiological needs such as thirst.

We have previously shown that perceptual decision-mak-
ing depended on pupil-linked arousal (5). We then examine
if pupil dynamics were different during adaptive decision-
making across the three paradigms. Indeed, the pupil dy-
namics around stimulus presentation were significantly dif-
ferent between the three paradigms for the four behavioral
outcomes (Fig. 4A). We found that there was a dramatic dif-
ference in task-evoked pupil dilation between the three para-
digms for hit trials (0.0554 ± 0.02 vs. 0.156 ± 0.015 vs. 0.36 ±
0.03, P< 1.9e-15, ANOVA test), and to a lesser degree for false
alarm trials (0.098 ± 0.022 vs. 0.096 ± 0.018 vs. 0.173 ±
0.0195, P < 0.01, ANOVA test), but not for the other two be-
havioral outcomes (correct rejection: 0.0525 ± 0.037 vs.
0.009 ± 0.028 vs. 0.154 ± 0.014, P ¼ 0.45, ANOVA test; miss:
0.0595 ± 0.0466 vs. 0.07 ± 0.035 vs. 0.04 ± 0.043, P ¼ 0.90,
ANOVA test) (Fig. 4B). There was a significant change in
baseline pupil size between the three paradigms for false
alarm trials (0.0142 ± 0.029 vs. 0.074 ± 0.07 vs. 0.15 ± 0.04,
P < 0.017, ANOVA test), whereas there was not a significant
difference in baseline pupil size between the three para-
digms for the other three behavioral outcomes (hit: 0.049 ±
0.017 vs. 0.08 ± 0.023 vs. 0.113 ± 0.04, P ¼ 0.32, ANOVA test;
correct rejection: �0.11 ± 0.062 vs. �0.085 ± 0.036 vs.
�0.183 ± 0.034, P ¼ 0.27, ANOVA test; miss: �0.0194 ± 0.087
vs.�0.1426 ± 0.007 vs.�0.183 ± 0.072, P¼ 0.32, ANOVA test)
(Fig. 4C). Interestingly, in paradigms with the fraction of Sþ
trials being 0.8 and 0.5, there was a profound inverted-U or
U-shaped relationship between baseline pupil size and hit/
false alarm rates, decision criterion, and perceptual sensitiv-
ity (Fig. 4, D and E). However, this inverted-U or U-shaped
relationship between baseline pupil size and hit/false alarm
rates, decision criterion, and perceptual sensitivity was less
conspicuous for the paradigm in which the fraction of Sþ
trials is 0.2 (Fig. 4F).

How were the pupil dynamics related to the adaptive
behavior? Our data demonstrated that task-evoked pupil
dilations were different across the three paradigms and that
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the animals mostly adjusted their decision criterion while
maintaining the same perceptual sensitivity across the three
paradigms. To determine the optimal decision criterion for
each paradigm, we simulated the water reward per unit time
with different decision criteria for each paradigm using our
experimental parameters. If a decision criterion was too neg-
ative, the animals would be liberal in making Go decisions.
Consequently, they would encounter many false alarms, and
thus a substantial portion of the task would be in the time-
out period. On the contrary, if the animals were too conserv-
ative inmaking Go decisions and set the decision criterion to
be a large positive value, the animals would falsely reject
many Sþ stimuli, resulting in a low hit rate and less water
intake throughout the task period. Our simulation results
indicated that the optimal decision criterion was signifi-
cantly smaller than the ones that we observed experimen-
tally. For the paradigm with fraction of Sþ trials being 0.8,
the optimal decision criterion and observed decision crite-
rion were �3.215 ± 0.107 versus �1.137 ± 0.084 (P < 0.2.35e-
20, t test). Similarly, the optimal and observed decision crite-
rion were�1.535 ± 0.033 versus�0.479 ± 0.065 (P < 1.43e-10,
t test) and�0.93 ± 0.0275 versus 0.0636 ± 0.086 (P< 6.5e-08,
t test) for the two other paradigms, respectively (Fig. 5A). We

further examined if the decision criterion was dependent on
pupil size within each paradigm. We found that in the para-
digm where 80% of trials were Sþ trials, the decision crite-
rion increased monotonically with baseline pupil size (P <
0.0025). However, this trend did not hold for the other two
paradigms (Fig. 5B).

Although these results indicated that the animals were
suboptimal in terms of their decision-making, the adaptive
change in decision criterion observed in our experiments
was in line with the optimal adjustment of decision criteria.
We therefore compared changes in decision criteria across
the three paradigms, measured as the slope of decision crite-
rion across the three paradigms, between the optimal deci-
sion-making case (i.e., simulation) and the real case (i.e.,
experiments). We found that the change in optimal decision
criteria in response to changes in paradigms, i.e., the slope of
optimal decision criterion across the three paradigms, was
much steeper than the experimentally observed slope (1.14
vs. 0.355) (Fig. 5C). We further examined if the adjustment of
decision criterion in response to changes in sensory environ-
ment depended on pupil-linked arousal indexed by pupil
size. To this end, we grouped trials of each session into three
groups based on the baseline pupil size, and calculated
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decision criteria for trials within each group (Fig. 5D). We
found that there was a systematic change in the slope
along the baseline pupil size, with the slope being largest
during small baseline pupil size (P < 5.4e-28, ANOVA test).
However, the slopes for all pupil size-dependent groups
were significantly smaller than the slope of optimal deci-
sion criteria (P < 4.4e-138, ANOVA test) (Fig. 5E).

We further used the drift diffusion model (DDM) to quan-
tify the extent to which the other parameters of decision-
making, including non-decision time, decision boundary,
drift rate, and initial bias, were affected by the changes in
sensory environment (Fig. 6A). To this end, we used a
Bayesian approach to estimate the distributions of decision-
making parameters at the group level for each paradigm
(49), and PpjD was used to refer to the proportion of posteri-
ors from Bayesian inference, supporting the working hy-
pothesis that there was a difference between the paradigms
at the group level. We first calculated the deviance informa-
tion criterion (DIC) value of the four variants of the hierarch-
ical DDM for our behavioral data (see METHODS). Since DIC
balances between a goodness-of-fit of the model and addi-
tional free model parameters, we used the model with the
lowest DIC value (Fig. 6B). This model generated a similar
distribution of reaction times to those measured experi-
mentally (Fig. 6C). HDDM results suggested a significant
difference in non-decision time and initial bias among the
three paradigms (PpjD � 1) (Fig. 6, D and E). However, for
the decision boundary, there was only a significant differ-
ence between the paradigm with 80% Sþ trials and both
paradigms with 50% and 20% Sþ trials (PpjD � 1), and
there was no difference between the paradigm with 50%
Sþ trials and the paradigm with 20% Sþ trials (PpjD ¼ 0.2)
(Fig. 6F). We failed to find significant differences in drift
rate across the paradigms (PpjD > 0.05) (Fig. 6G).

DISCUSSION
Our previous work investigated how pupil-linked arousal

modulates behavioral performance (18) and the extent to

which arousal systems indexed by electrocardiograph signals
and pupil size differently modulate perceptual behavior (14).
The present study was designed to allow us to investigate
adaptive behavior in rats performing perceptual decision-
making tasks. Previous work has demonstrated adaptive
behavior in response to changes in rewards and stimulus
properties (9, 20). In this study, we manipulated the probabil-
ity of Go and No-go stimuli and characterized the animals’
adaptive decision-making at different pupil-linked arousal
levels. The results present several novel findings. First, we
showed that the animals became more liberal in making a Go
decision when the probability of Sþ stimulus increased. This
behavioral adaptation is in line with the optimal adaptation
to maximize rewards during the task (Figs. 2 and 5). Second,
task-evoked phasic pupil-linked arousal is higher when the
probability of Sþ is low (Fig. 4). Finally, adaptive decision-
making is dependent on pupil-linked arousal (Fig. 5,D and E).
Consistent with human results (53), our animals performed
suboptimally in adjusting their decision criterion in response
to varying probabilities of Sþ trials. For all three paradigms,
the animals could have received more water rewards if they
were more liberal in making Go decisions in the behavioral
tasks (Fig. 5A). One possible explanation could be that the
tone indicating the onset of the timeout period became aver-
sive to the animals, increasing the cost of false alarms.

We systematically manipulated the probability of Sþ tri-
als, varying from either 20%, 50%, or 80% in the experi-
ments, as a means to probe adaptive decision-making.
Uncertainty of sensory inputs and rewards has been shown
to impose effects on neural computation and decision-mak-
ing (19, 24, 54–57). It is important to note that the uncer-
tainty of sensory stimuli is theoretically the same for the two
paradigms in which the probability of Sþ trial is 80% and
20% in our experiments. If uncertainty plays a critical role in
adaptive decision-making and evoking pupil dilation in our
experiments, we would expect to see the same adaptive
behavior and pupil dynamics in those two paradigms.
However, we observed a monotonic increase in both deci-
sion criterion and task-evoked pupil dilation across the three
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paradigms, suggesting that the uncertainty of stimulus is not
a primary factor responsible for adaptive decision-making.

What behavioral state did our experimental conditions
manipulate in the animals? For the paradigms with a lower
probability of Sþ trials, we observed a slowdown of reaction
times and less impulsive licking. So it is possible that the ani-
mals were less engaged or less attentive in the task for these
paradigms. Task engagement and attention have been
shown to modulate neural representation and cognitive
processing in behavioral tasks (8, 15, 58–61), and thus might
be an important contributor to adaptive decision-making.
However, the animals’ behavioral performance does not sup-
port this possibility because there was no significant differ-
ence in perceptual sensitivity across the three paradigms.
However less engagement and poor attention usually lead to
poor performance in perceptual tasks. Moreover, the task-
evoked pupil dilation is largest in the paradigm where the
probability of Sþ trials was 20%, but previous work sug-
gested larger task-evoked pupil dilation during more task-
engaged or attentive periods (9, 62). Therefore, the behav-
ioral adaptation during perceptual decision-making in our
experiments is unlikely to be primarily due to changes in be-
havioral states such as attention or engagement in the task.
A possibility is that this behavioral adaptation is driven by
different internal models involving probabilistic inference
and expectation (24, 25, 63). Another explanation of the
observed behavioral adaptation would be the motivation
associated with each behavioral paradigm as previous work
has shown that over-motivated state and under-motivated
state resulted in different response probabilities in percep-
tual tasks (8, 15). The increase in reaction time and decrease
in response probability can be interpreted as the animals
were under-motivated due to a low chance of obtaining
water reward in the behavioral paradigm where the fraction
of Sþ trials was 0.2. However, the animals were thirstier due
to less total water reward in this paradigm as compared with
the other two paradigms, and therefore should presumably
be more motivated. The cause of the adaptive decision-mak-
ing is thus likely to involve bothmechanisms. Another inter-
esting observation is that the animals used in this study
exhibited lower perceptual sensitivities on average than our
previous studies despite the fact that the experimental setup
used in both studies was almost identical (18). This may be
because we randomly switched paradigms between sessions
in the study and the animals had to allocate some mental
efforts to update internal models during the task, resulting
in a poorer perceptual performance. Future work with elec-
trophysiological recordings and manipulations in higher-
order brain regions (e.g., the prefrontal cortex or parietal cor-
tex) and neuromodulatory systems will help answer this in-
triguing question (19, 64).

Our findings provide new evidence that adaptive decision-
making is dependent on pupil-linked arousal. Previous work
suggested that pupil size is able to reliably index the activa-
tion of the LC-NE system, as microstimulation of the LC
evoked dramatic dilation of pupil in rats and non-human
primates (43, 65) (but also see Ref. 66 for the relationship
between LC activity and pupil size in mice). Recent experi-
mental results also demonstrated that pupil size co-varies
with cholinergic activity in the brain to a lesser degree.
Cholinergic neurons of the basal forebrain are more active

during pupil dilation (36). Two-photon imaging revealed a
positive correlation between the activation of cortical cholin-
ergic axons and pupil size (37). Recent results showed that
phasic stimulation of serotonergic neurons in the dorsal
raphe nucleus causes pupil size changes in mice performing
a foraging task (35). Therefore, it is likely that the three neu-
romodulatory systems collectively exert influences on adapt-
ive decision-making in our experiments. It is intriguing for
future studies to use selective manipulation to tease apart
the contribution that each of the neuromodulatory systems
provides to adaptive decision-making.
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