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Brain–machine interfaces (BMIs) for reaching have enjoyed continued performance improvements, yet there remains signifi-
cant need for BMIs that control other movement classes. Recent scientific findings suggest that the intrinsic covariance struc-
ture of neural activity depends strongly on movement class, potentially necessitating different decode algorithms across
classes. To address this possibility, we developed a self-motion BMI based on cortical activity as monkeys cycled a hand-held
pedal to progress along a virtual track. Unlike during reaching, we found no high-variance dimensions that directly correlated
with to-be-decoded variables. This was due to no neurons having consistent correlations between their responses and kine-
matic variables. Yet we could decode a single variable—self-motion—by nonlinearly leveraging structure that spanned multi-
ple high-variance neural dimensions. Resulting online BMI-control success rates approached those during manual control.
These findings make two broad points regarding how to build decode algorithms that harmonize with the empirical structure
of neural activity in motor cortex. First, even when decoding from the same cortical region (e.g., arm-related motor cortex),
different movement classes may need to employ very different strategies. Although correlations between neural activity and
hand velocity are prominent during reaching tasks, they are not a fundamental property of motor cortex and cannot be
counted on to be present in general. Second, although one generally desires a low-dimensional readout, it can be beneficial
to leverage a multidimensional high-variance subspace. Fully embracing this approach requires highly nonlinear approaches
tailored to the task at hand, but can produce near-native levels of performance.
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Significance Statement

Many brain–machine interface decoders have been constructed for controlling movements normally performed with the arm.
Yet it is unclear how these will function beyond the reach-like scenarios where they were developed. Existing decoders implic-
itly assume that neural covariance structure, and correlations with to-be-decoded kinematic variables, will be largely pre-
served across tasks. We find that the correlation between neural activity and hand kinematics, a feature typically exploited
when decoding reach-like movements, is essentially absent during another task performed with the arm: cycling through a vir-
tual environment. Nevertheless, the use of a different strategy, one focused on leveraging the highest-variance neural signals,
supported high performance real-time brain–machine interface control.

Introduction
Intracortical brain–machine interfaces (BMIs) that support
reach-like tasks have proved successful in primates and human
clinical trials (Ethier et al., 2012; Gilja et al., 2012, 2015; Collinger
et al., 2013; Shenoy and Carmena, 2014; Wodlinger et al., 2015;
Ajiboye et al., 2017; Shanechi et al., 2017). Yet it is unclear
whether current decode algorithms will generalize well to non-
reaching applications, even within the domain of arm move-
ments. Early reach-based BMIs (Chapin et al., 1999; Wessberg et
al., 2000; Serruya et al., 2002; Taylor et al., 2002; Carmena et al.,
2003; Velliste et al., 2008) employed a strategy of inverting the
ostensible neural encoding of kinematic variables, primarily
hand velocity and direction. Despite evidence against literal
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kinematic encoding (Scott et al., 2001; Sergio et al., 2005;
Churchland et al., 2012; Sussillo et al., 2015; Michaels et al., 2016;
Russo et al., 2018), studies have continued to leverage robust cor-
relations between neural activity and reach kinematics.
Improvements have derived from honing this strategy (Gilja et
al., 2012), from stabilizing the neural subspace containing the
useful correlations (Degenhart et al., 2020; Gallego et al., 2020)
and/or from better estimating the neural state (Aghagolzadeh
and Truccolo, 2016; Makin et al., 2018). For example, Kao et al.
(2015) leveraged dynamics, spanning many neural dimensions,
to denoise activity in dimensions where correlations with reach
kinematics were strong.

Successful decoding both leverages (Chase and Schwartz,
2011; Shenoy et al., 2011) and serves to validate scientific
assumptions, including whether population activity evolves
according to dynamics (Kao et al., 2015) and how neural
responses change during learning (Taylor et al., 2002; Ganguly et
al., 2011; Sadtler et al., 2014). The assumption that neural activity
correlates robustly with external parameters (Taylor et al., 2002;
Kandel et al., 2021) has been near-universal, yet is based almost
entirely on observations during reach-like movements of the
arm or wrist. Correlations between neural activity and hand
velocity are perhaps not surprising during reaching; both are
phasic. A natural question is whether this empirical founda-
tion can be relied on when decoding movements of the arm
that are not reach-like. Do strong correlations remain, or do
other response features become prominent, requiring different
decode strategies?

BMIs designed for different effectors (e.g., for tongue and
speech decoding) have already had to contend with the possibil-
ity that strong correlations between neural activity and to-be-
decoded variables may be absent, requiring highly nonlinear
approaches (Anumanchipalli et al., 2019; Liu et al., 2019). Even
within the realm of reaching, performance is improved if a recur-
rent network precedes linear decoding of kinematics (Sussillo et
al., 2012, 2016). Much of this benefit may be due to denoising
(similar to Kao et al., 2015), but this finding also suggests mean-
ingful nonlinear relationships. What then should we expect dur-
ing non–reach-like arm movements? Will strong linear
correlations with kinematics persist, or will other more nonlinear
relationships become dominant? This question is intertwined
with our evolving understanding of motor cortex covariance
structure. During a given task, a handful of neural dimensions
typically captures considerable variance (Churchland et al., 2007;
Sadtler et al., 2014; Gallego et al., 2017). These high-variance
dimensions are useful for decoding because higher variance
implies better noise resistance. Within a given task, neural covar-
iance structure remains surprisingly fixed even when the decoder
is altered (Sadtler et al., 2014; Golub et al., 2018) and can remain
similar across related tasks (Gallego et al., 2018). If covariance
remains fixed across tasks, then the nature of neural-vs-kine-
matic correlations would presumably also be stable. One might
still need different decode strategies for very different modalities
(e.g., arm movements vs speech), but one could hope to use a
unified strategy within a modality.

Yet there is increasing experimental evidence that covariance
is often not stable across tasks. Covariance changes dramatically
when cycling forward versus backward (Russo et al., 2018), when
using one arm versus another (Ames and Churchland, 2019),
when preparing versus moving (Kaufman et al., 2014; Elsayed et
al., 2016; Inagaki et al., 2020), when reaching versus walking
(Miri et al., 2017), and when co-contracting versus alternating
muscle activity (Warriner et al., under review). Thus, in a new

task, there is no guarantee the high-variance dimensions will be
the same or will show the same correlations with kinematics.
Indeed, the separation of computations related to different tasks
into different dimensions may be a common network property
(Duncker et al., 2020). While such a property would impair the
use of the same decode strategy across tasks, it could also allow
the design of decoders that leverage task-specific relationships
between neural activity and kinematic variables.

To investigate, we employed a simple task in which monkeys
cycle a hand-held pedal to move along a virtual track. The class
of neural activity evoked by this task (rhythmic activity with fre-
quency reflecting movement speed) could potentially be lever-
aged by future BMI devices that guide self-motion. Prior
explorations of self-motion-decoding borrowed from the strat-
egies employed by reach-based BMIs, and decoded a whole-body
directional vector (Rajangam et al., 2016) or classified the direc-
tion of a joystick intermediary (Libedinsky et al., 2016). This is a
promising approach, but we wished to explore whether a task-
specific approach might also be promising. Cycling is overtly dif-
ferent from reach- or joystick-based tasks, and might both
require and allow different decode strategies.

During cycling, activity that correlated with kinematics was
relegated to low-variance dimensions. Put differently, most neu-
rons displayed activity that did not correlate particularly well
with kinematics. While there existed linear readouts of activity
that did correlate well with movement kinematics, they were
based on low-variance dimensions and thus susceptible to noise.
In contrast, there existed high-variance subspaces where neural
activity had reliable nonlinear relationships with intended self-
motion. The ability to decode a one-dimensional command for
virtual self-motion, from activity spanning multiple high-var-
iance dimensions, produced both high accuracy and low latency.
Success rates and acquisition times were close to those achieved
under manual control. As a result, almost no training was
needed; monkeys appeared to barely notice transitions from
manual to BMI control. These findings make two points regard-
ing how BMI decoding should interact with the basic properties
of motor cortex activity. First, the neural relationships leveraged
by traditional decoders are empirically reliable only during some
behaviors. Second, even when those traditional relationships are
absent, other task-specific relationships will be present and can
support very accurate decoding.

Materials and Methods
Experimental design
All procedures were approved by the Columbia University Institutional
Animal Care and Use Committee. Subjects G and E were 2 adult male
macaque monkeys (Macaca mulatta). Monkeys sat in a primate chair
facing an LCD monitor (144Hz refresh rate) that displayed a virtual
environment generated by the Unity engine (Unity Technologies). The
head was restrained via a titanium surgical implant. While the monkey’s
left arm was comfortably restrained, the right arm grasped a hand pedal.
Cloth tape was used to ensure consistent placement of the hand on the
pedal. The pedal connected via a shaft to a motor (Applied Motion
Products), which contained a rotary encoder that measured the position
of the pedal with a precision of 1/10,000 of the cycle. The motor was also
used to apply forces to the pedal, endowing it with virtual mass and
viscosity.

Although our primary focus was on BMI performance, we also
employed multiple sessions where the task was performed under manual
control. Manual-control sessions allowed us to document the features of
neural responses we used for decoding. They documented “normal” per-
formance, against which BMI performance could be compared. Monkey
G performed eight manual-control sessions (average of 229 trials/session),
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each within the same day as 1 of the 20 BMI-controlled sessions (average
of 654 trials/session). Monkey E performed five manual-control sessions
(average of 231 trials/session) on separated days from the 17 BMI-con-
trolled sessions (average of 137 trials/session).

BMI-controlled sessions were preceded by 50 “decoder-training tri-
als” performed under manual control. These were used to train the de-
coder on that day. Decoder-training trials employed only a subset of all
conditions subsequently performed during BMI control. Thus, BMI-
controlled performance had to generalize to sequences of different dis-
tances not present during the decoder-training trials. Because they did
not include all conditions, we do not analyze performance for decoder-
training trials. All performance comparisons are made between manual-
control and BMI-control sessions, which employed identical conditions,
trial parameters, and definitions of success versus failure. We describe
the task below from the perspective of manual control. The task was
identical under BMI control, except that position in the virtual environ-
ment was controlled by the output of a decoder rather than the pedal.
We did not prevent or discourage the monkey from cycling during BMI
control, and he continued to do so as normal.

The cycling task required that the monkey cycle the pedal in the
instructed direction to move through the virtual environment, and stop
on top of lighted targets to collect juice reward. The color of the land-
scape indicated whether cycling must be “forward” (green landscape, the
hand moved away from the body at the top of the cycle) or “backward”
(tan landscape, the hand moved toward the body at the top of the cycle).
In the primary task, cycling involved moving between stationary targets
(in a subsequent section, we describe an additional task used to evaluate
speed control). There were 6 total conditions, defined by cycling direc-
tion (forward or backward) and target distance (2, 4, or 7 cycles).
Distance conditions were randomized within same-direction blocks
(three trials of each distance per block), and directional blocks were
randomized over the course of each session. Trials began with the mon-
key stationary on a target. A second target appeared in the distance. To
obtain reward, the monkey had to cycle to that target, come to a halt “on
top” of it (in the first-person perspective of the task), and remain station-
ary for a hold period of 1000-1500ms (randomized). A trial was aborted
without reward if the monkey began moving before target onset (or in
the 170ms after, which would indicate attempted anticipation), if the
monkey moved past the target without stopping, or if the monkey
moved while awaiting reward. The next trial began 100ms after the vari-
able hold period. Monkeys performed until they received enough liquid
reward that they chose to desist. As their motivation waned, they would
at times take short breaks. For both manual-control and BMI-control
sessions, we discarded any trials in which monkeys made no attempt to
initiate the trial, and did not count them as “failed.” These trials occurred
26 2 times per session (mean and SD, Monkey G, maximum 10) and
36 3 times per session (Monkey E, maximum 11).

For Monkey G, an additional three manual-control sessions (189,
407, and 394 trials) were employed to record EMG activity from the
muscles. We recorded from 5 to 7 muscles per session, yielding a total of
19 recordings. We made one or more recordings from the three heads of
the deltoid, the lateral and long heads of triceps brachii, the biceps bra-
chii, trapezius, and latissimus dorsi. These muscles were selected due to
their clear activation during the cycling task.

Surgery and neural/muscle recordings
Neural activity was recorded using chronic 96-channel Utah arrays
(Blackrock Microsystems), implanted in the left hemisphere using stand-
ard surgical techniques. In each monkey, an array was placed in the
region of primary motor cortex (M1) corresponding to the upper arm.
In Monkey G, a second array was placed in dorsal premotor cortex
(PMd), just anterior to the first array. Array locations were selected
based on MRI scans and anatomical landmarks observed during surgery.
Experiments were performed 1-8months (Monkey G) and 3-4months
(Monkey E) after surgical implantation. Neural responses both during
the task and during palpation confirmed that arrays were in the proxi-
mal-arm region of cortex.

Electrode voltages were filtered (bandpass 0.3Hz to 7.5 kHz) and
digitized at 30 kHz using Digital Headstages, Digital Hubs, and Cerebus

Neural Signal Processors from Blackrock Microsystems. Digitized vol-
tages were high-pass filtered (250Hz) and spike events were detected
based on threshold crossings. Thresholds were set to between �4.5 and
�3 times the RMS voltage on each channel, depending on the array
quality on a given day. On most channels, threshold crossings included
clear action-potential waveforms from one or more neurons, but no
attempt was made to sort action potentials.

Intramuscular EMG recordings were made using pairs of hook-wire
electrodes inserted with 30 mm � 27 gauge needles (Natus Neurology).
Raw voltages were amplified and filtered (bandpass 10Hz to 10kHz) with
ISO-DAM 8A modules (World Precision Instruments), and digitized at
30kHz with the Cerebus Neural Signal Processors. EMG was then digitally
bandpass filtered (50Hz to 5kHz) prior to saving for offline analysis.
Offline, EMG recordings were rectified, low-pass filtered by convolving with
a Gaussian (SD: 25ms), downsampled to 1kHz, and then fully normalized
such that the maximum value achieved on each EMG channel was 1.

A real-time target computer (Speedgoat) running Simulink Real-
Time environment (The MathWorks) processed behavioral and neural
data and controlled the decoder output in online experiments. It also
streamed variables of interest to another computer that saved these vari-
ables for offline analysis. Stateflow charts were implemented in the
Simulink model to control task state flow as well as the decoder state
machine. Real-time control had millisecond precision.

Spike trains were causally converted to firing rates by convolving
each spike with a b kernel. The b kernel was defined by temporally
scaling a b distribution (shape parameters: a = 3 and b = 5) to be
defined over the interval [0, 275] ms and normalizing the kernel such
that the firing rates would be in units of spikes/s. The same filtering was
applied for online decoding and offline analyses. Firing rates were also
mean centered (subtracting the mean rate across all times and condi-
tions) and normalized. During online decoding, the mean and normal-
ization factor were values that had been computed from the training
data. We used soft normalization (Russo et al., 2018): the normalization
factor was the firing rate range plus a constant (5 spikes/s).

Computing trial-averaged firing rates
Analyses of BMI performance are based on real-time decoding during
online performance, with no need to consider trial-averaged firing rates.
However, we still wished to compute trial-averaged traces of neural ac-
tivity and kinematics for two purposes. First, some aspects of decoder
training benefited from analyzing trial-averaged firing rates. Second, we
employ analyses that document basic features of single-neuron responses
and of the population response (e.g., plotting neural activity within task-
relevant dimensions). These analyses benefit from the denoising that
comes from computing a time-varying firing rate across many trials.
Due to the nature of the task, trials could be quite long (up to 20 cycles
in the speed-tracking task), rendering the traditional approach of align-
ing all trials to movement onset insufficient for preserving alignment
across all subsequent cycles. It was thus necessary to modestly adjust the
time base of each individual trial (e.g., stretching time slightly for a trial
where cycling was faster than typical). We employed two alignment
methods. Method A is a simplified procedure that was used prior to pa-
rameter fitting when training the decoder before online BMI control.
This method aligns only times during the movement. Method B is a
more sophisticated alignment procedure that was used for all offline
analyses. This method aligns the entire trial, including premovement
and postmovement data. For visualization, conditions with the same tar-
get distance (e.g., 7 cycles), but different directions, were also aligned to
the same time base. Critically, any data processing that relied on tempo-
ral structure was completed in the original, unstretched time base prior
to alignment.

Method A. The world position for each trial resembles a ramp
between movement onset and offset. First, we identify the portion of
each trial starting ¼ cycle into the movement and ending ¼ cycle before
the end of the movement. We fit a line to the world position in this pe-
riod and then extend that line until it intercepts the starting and ending
positions. The data between these two intercepts are considered the
movement data for each trial and are extracted. These movement data
are then uniformly stretched in time to match the average trial length for
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each trial’s associated condition. This approach compresses slower than
average movements and stretches faster than average movements within
a condition, such that they can be averaged while still preserving many
of the cycle-specific features of the data.

Method B. This method consists of a mild, nonuniform stretching of
time in order to match each trial to a condition-specific template (for
complete details, see Russo et al., 2018).

Statistical analysis
Statistical analysis relating to neural activity during manual control (see
Fig. 2) is described in the following sections. Analysis related to perform-
ance of the decoders during the main BMI task and the speed-control
task variant is given subsequently in the associated Materials and
Methods and Results sections.

Neural variance captured analysis
Analysis of neural variance captured was based on successful trials from the
three sessions, performed under manual control, with simultaneous neural
and muscle recordings. Each session was split into a training set (250 trials
for two of the sessions, 300 trials for the third) and testing set (100 trials for
two of the sessions, 200 trials for the third). Neural dimensions were identi-
fied using a subset of training trials in order to match the size of the training
sets used for online decoding (25 forward 7 cycle trials and 25 backward 7
cycle trials). Neural variance captured was computed (as described below)
using the trial-averaged neural activity from the full training set for all condi-
tions. We considered data from the full duration of each trial, including
times before movement onset and after movement offset. We analyzed the
variance captured by neural dimensions of three types: (1) neural dimensions
where activity correlated strongly with kinematic features; (2) neural dimen-
sions where activity correlated strongly with muscle activity; and (3) neural
dimensions that captured robust “features” leveraged by our decoder.

Dimensions of the third type were found as detailed in a dedicated
section below. Dimensions of the first two types were found with ridge
regression, using the model z r; tð Þ ¼ c1w>y r; tð Þ, where zðr; tÞ is the ki-
nematic or muscle variable at time t during trial r, and yðr; tÞ is the cor-
responding N-dimensional vector of neural firing rates. The vector w
defines a direction in neural space where activity correlates strongly with
the variable z. It is found by minimizing the objective function
E c;wð Þ ¼ kz � c� w>yk221l kwk22, where l is a free parameter that
serves to regularize the weights w. We found multiple such vectors; for
instance, wx�vel is a dimension where neural activity correlates with hori-
zontal velocity and wbiceps is a dimension where neural activity correlates
with biceps activity. For each kinematic or muscle variable, we swept l
to find the value that yielded the largest coefficient of determination on
held-out data, and then used that l for all analyses. Because filtering of
neural activity introduces a net lag, this analysis naturally assumes a
;100ms lag between neural activity and the variables of interest. Results
were extremely similar if we considered longer or shorter lags. Although
we present the results of a ridge regression (L2 penalty), a lasso regres-
sion (L1 penalty) was also attempted and found to yield similar results
(R2 performance within 3% and even less neural variance captured).

Before computing neural variance explained, each vector w was scaled
to have unity norm, yielding a dimension in neural space. We wished to
determine whether that dimension captured large response features that
were reliable across trials. Thus, variance captured was always computed
based on trial-averaged neural responses (averages taken across all trials in
the data used to identify w). We considered the matrix �Y 2 RN�T , where T
is the total number of time points across all conditions. Each row of �Y con-
tains the trial-averaged firing rate of one neuron. We computed an N � N
covariance matrix R ¼ covð�YÞ by treating rows of �Y as random variables
and columns as observations. The proportion of total neural variance cap-
tured by a given dimension,w, is therefore as follows:

w>Rw

tr Rð Þ

Some analyses considered the variance captured by a subspace
spanned by a set of dimensions. To do so, we took the sum of the var-
iance captured by orthonormal dimensions spanning that space.

Single-channel correlation analysis
To assess whether kinematic signals make a large contribution to single-
unit firing rates during this task, we performed two correlation analyses.
First, for each unit, we took single-trial neural firing rates (during the
same trials and sessions as in the previous section) and found the maxi-
mum cross-correlation with horizontal and vertical pedal velocity (lags
between �1000ms and 1000ms). Second, for each unit, we performed a
regression of the firing rate on horizontal and vertical pedal velocity, and
then found the maximum cross-correlation between the recorded firing
rate and that predicted by the pedal velocity (lags between �1000ms
and 1000ms).

Identifying neural dimensions
The response features leveraged by the decode algorithm are clearly visi-
ble in the top principal components of the population response, but indi-
vidual features are not necessarily aligned with individual principal
component dimensions. To find neural dimensions that cleanly isolated
features, we employed dedicated preprocessing and dimensionality
reduction approaches tailored to each feature. Dimensions were found
based on the 50 decoder-training trials, collected at the beginning of
each BMI-controlled session, before switching to BMI-control.

We sought a “moving-sensitive dimension” where activity reflected
whether the monkey was stopped or moving. We computed spike counts
in time bins both when the monkey was moving (defined as angular
velocity. 1Hz) and when he was stopped (defined as angular velocity,
0.05Hz). We ignored time bins that did not fall into either category.
Spike counts were square-root transformed so that a Gaussian distribu-
tion becomes a more reasonable approximation (Thacker and Bromiley,
2001). This resulted, for each time-bin, in an activity vector (one element
per recorded channel) of transformed spike counts and a label (stopped
or moving). Linear discriminant analysis yielded a hyperplane that dis-
criminated between stopped and moving. The moving-sensitive dimen-
sion, wmove, was the vector normal to this hyperplane.

We sought four neural dimensions that captured rotational trajecto-
ries during steady-state cycling. Spike time-series were filtered to yield
firing rates (as described above), then high-pass filtered (second-order
Butterworth, cutoff frequency: 1Hz) to remove any slow drift. Single-
trial movement-period responses were aligned (Method A, above) and
averaged to generate an N � Tf matrix �Yf containing responses during
forward cycling, and an N � Tb matrix �Yb containing responses during
backward cycling. We sought a four-dimensional projection that would
maximally capture rotational trajectories while segregating forward and
backward data into different planes. Whereas the standard PCA cost
function finds dimensions that maximize variance captured, we opted
instead for an objective function that assesses the difference in variance
captured during forward and backward cycling as follows:

JðWÞ ¼ trðW>RfWÞ � trðW>RbWÞ

where Rf ¼ covð�Yf Þ, Rb ¼ covð�YbÞ, and W is constrained to be ortho-
normal. This objective function will be maximized when projecting the
data onto W captures activity during forward cycling but not backward
cycling. It will be minimized when the opposite is true: the projection
captures activity during backward but not forward cycling. We thus
define the forward rotational plane as the N � 2 matrix

Wf ¼ wð1Þ
f wð2Þ

f

h i
that maximizes JðWÞ. Similarly, the backward rota-

tional plane was the N � 2 matrix Wb ¼ wð1Þ
b wð2Þ

b

h i
that minimizes

JðWÞ. Iterative optimization was used to find Wf and Wb using the
Manopt toolbox (Boumal et al., 2014) as detailed by Cunningham and
Ghahramani (2015). Optimization naturally results inWf andWb ortho-
normal to one another.

Finally, we sought dimensions where neural responses were maxi-
mally different, when comparing forward and backward cycling, in the
moments just after movement onset. To identify the relevant epoch, we
determined the time, tinit, when the state machine would have entered
the INIT state during online control. We then considered trial-averaged
neural activity, for forward and backward cycling, from tinit through
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tinit1200 ms. We applied PCA and retained the top three dimensions:
wð1Þ
dir , w

ð2Þ
dir , and wð3Þ

dir . Such dimensions capture both how activity evolves
during the analyzed epoch and how it differs between forward and back-
ward cycling.

Computing probability of moving
Based on neural activity in the moving-sensitive dimension, a hidden
Markov model (HMM) inferred the probability of being in each of
two behavioral states: “moving” or “stopped” (Kao et al., 2017a). As
described above, square-rooted spike counts in the decoder-training
data were already separated into “moving” and “stopped” sets for
the purposes of identifying wmove. We projected those counts onto
wmove and a fit a Gaussian distribution to each set.

When under BMI control, we computed pmove tð Þ, the probability of
being in the “moving” state, given the entire sequence of current and
previously observed square-rooted spike counts. pmove tð Þ was computed
with a recursive algorithm that used the state transition matrix:

U ¼ pmovejmove pmovejstop
pstopjmove pstopjstop

� �

and knowledge of the Gaussian distributions. U encodes assumptions
about the probability of transitioning from one state to the next at any
given bin. For each monkey, we chose reasonable values for U based on
preliminary data. For Monkey G, we set pmovejstop ¼ :0001 and
pstopjmove ¼ :002. For Monkey E, we set pmovejstop ¼ :0002 and
pstopjmove ¼ :004: These values were used for all BMI-controlled sessions.

Computing steady-state direction and speed
During BMI control, we wished to infer the neural state in the four
“rotational” dimensions, spanned by [Wf ;Wb�: We began with yt , a vec-
tor containing the firing rate of every neuron at the present time t, com-
puted by causally filtering spikes and preprocessing as described above.
For this computation only, computation of yt included high-pass filter-
ing to remove any drift on timescales slower than the rotations (same fil-
ter used when identifying Wf and Wb). We applied a Kalman filter of
the form:

xt ¼ Axt�1 1 qt

yt ¼ Cxt 1 rt

where qt 2 N 0;Qð Þ, and rt 2 N 0;Rð Þ. In these equations, xt represents
the true underlying neural state in the rotational dimensions and the
firing rates yt are a noisy reflection of that underlying state. We
employed filtered firing rates, rather than binned spike counts, for
purely opportunistic reasons: it consistently yielded better
performance.

The parameters of the Kalman filter were fit based on data from the
decoder-training trials. We make the simplifying assumption that the
“ground truth” state is well described by the trial-averaged firing rates
projected onto [Wf ;Wb�. If so, A and Q can be directly inferred from the
evolution of that state, and R reflects to the degree to which single-trial
firing rates differ from their idealized values:

A ¼ �X2
�X>

1
�X1

�X>
1

� ��1

C ¼ ½Wf ;Wb�

Q ¼ covð�X2 � A�X1Þ

R ¼ covðY � C�XÞ

where

�X1 ¼ C>½�Yf :; 1: end� 1ð Þ; �Yb :; 1: end� 1ð Þ�

�X2 ¼ C>½�Yf :; 2: endð Þ; �Yb :; 2: endð Þ�

�X ¼ C>½�Y 1; �Y 2; :::; �Y 50�

�Yi ¼
�Yf if the ith trial was forward
�Yb if the ith trial was backward

(

Y ¼ ½Y1;Y2; :::;Y50�

where �Yf and �Yb are the trial-averaged activity when cycling forward
and backward, respectively, Yi is the neural activity for the i-th trial in
the training set, and indexing uses MATLAB notation. Online inference
yields an estimate x̂t at each millisecond t, computed recursively using
the steady-state form of the Kalman filter (Malik et al., 2011).

Angular momentum was computed in each plane as the cross prod-
uct between the estimated neural state and its derivative, which (up to a
constant scaling) can be written:

L tð Þ ¼ Lf ðtÞ
LbðtÞ

" #
¼ x̂ð1Þ

t�1x̂
ð2Þ
t � x̂ð1Þ

t x̂ð2Þ
t�1

x̂ð3Þ
t�1x̂

ð4Þ
t � x̂ð3Þ

t x̂ð4Þ
t�1

" #

where the superscript indexes the elements of x̂t . We fit two-dimen-
sional Gaussian distributions to these angular momentums for each of
three behaviors in the training data: “stopped” (speed, 0.05Hz), “ped-
aling forward” (velocity. 1Hz), and “pedaling backward” (velocity ,
�1Hz). Online, the likelihood of the observed angular momentums
with respect to each of these three distributions dictated the steady-state
estimates of direction and speed. We denote these three likelihoods fstop,
fforward, and fbackward.

In principle, one could render a simple 3-valued decode (stopped,
moving forward, moving backward) based on the highest likelihood.
However, we wanted the decoder to err on the side of withholding
movement, and for movement speed to reflect certainty regarding direc-
tion. We set speedsteady to zero unless the value of fstop was below a con-
servative threshold, set to correspond to a Mahalanobis distance of 3
between L and the distribution of angular momentums when stopped.
(In one dimension, this would be equivalent to being .3 SDs from the
mean neural angular momentum when stopped.) When fstop was below
threshold, we decoded direction and speed as follows:

directionsteadyðtÞ ¼ sgn fforward tð Þ � fbackward tð Þ� �

speedsteadyðtÞ ¼
����2 � fforwardðtÞ

fforwardðtÞ1 fbackwardðtÞ � 1

����b
where

����2 � fforwardðtÞ
fforwardðtÞ1fbackwardðtÞ � 1

���� varies between 0 and 1 depending

on the relative sizes of the likelihoods (yielding a slower velocity if the
direction decode is uncertain) and b is a direction-specific constant
whose purpose is simply to scale up the result to match typical steady-
state cycling speed. In practice, certainty regarding direction was high
at most moments and speedsteady was thus close to the maximal value set
by b .

Computing initial direction and speed
Decoded motion was determined by a state machine with four states:
STOP, INIT, EARLY, and STEADY. Transitions between these states
were determined primarily by pmove. Decoded velocity was zero for
STOP and INIT and was determined by speedsteady (as described above)
when in STEADY. Because rotational features were not yet robustly
present in the EARLY state, we employed a different method to infer
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initial direction and speed. Both were determined at tearly, the moment
the EARLY state was entered. These values then persisted throughout
the remainder of the EARLY state. Decoded direction was determined
by projecting the vector of firing rates, at the moment the EARLY state
was entered, onto the three initial-direction dimensions, wð1Þ

dir , w
ð2Þ
dir , and

wð3Þ
dir . These directions were computed based on decoder-training trials

(see above) as were the Gaussian distributions of single-trial projections
when cycling forward versus backward (using the moment the EARLY
state would have been entered). This allowed us to compute the likeli-
hoods, gforward and gbackward, of the present projection given each distribu-
tion. If the observed projection was not an outlier (.10 Mahalanobis
distance units) with respect to both distributions, initial direction and
speed were computed as:

directioninitialðtearlyÞ ¼ sgn gforward tearlyð Þ � gbackward tearlyð Þð Þ

speedinitial tearlyð Þ ¼
����2 � gforward tearlyð Þ

gforward tearlyð Þ1gbackward tearlyð Þ � 1

����b :

If the observed neural state was an outlier, we assumed rotational
structure was likely already present and initial direction and speed were
set to directionsteady and speedsteady as described above.

Smoothing of decoded velocity
The decoder state machine produced an estimate of velocity, vdec, at ev-
ery millisecond. During the STOP and INIT states, this estimate was
always zero and the monkey’s position in the virtual environment
was held constant. During the EARLY and STEADY states, this estimate
was smoothed with a trailing average:

vdec9 tð Þ ¼ 1
Tsmooth 1 1

XTsmooth

i¼0

vdecðt � iÞ

where Tsmooth ¼ minð500; t � tearlyÞ; i.e., the trailing average extended in
history up to 500ms or to the moment the EARLY state was entered,
whichever was shorter. vdec9 was integrated every millisecond to yield
decoded position in the virtual environment. In the speed-tracking
experiment (described below), there was no need to smooth vdec prior to
integration because the speed estimate had already been smoothed.

Design and statistical analysis of the speed-tracking task
In addition to the primary task (where the monkey traveled 2 to 7 cycles
between stationary targets), we employed a speed-tracking task, in which
the monkey was required to match his virtual speed to an instructed
speed. Speed was instructed implicitly, via the relative position of two
moving targets. The primary target was located a fixed distance in front
of the monkey’s location in virtual space: the secondary target fell
“behind” the first target when cycling was too slow, and pulled “ahead”
if cycling was too fast. This separation saturated for large errors, but for
small errors was proportional to the difference between the actual and
instructed speed. This provided sufficient feedback to allow the monkey
to track the instructed speed, even when it was changing. Because there
was no explicit cue regarding the absolute instructed speed, monkeys
began cycling on each trial unaware of the true instructed speed profile
and “honed in” on that speed over the first;2 cycles.

We quantify instructed speed not in terms of the speed of translation
through the virtual environment (which has arbitrary units) but in terms
of the physical cycling velocity necessary to achieve the desired virtual
speed. For example, an instructed speed of 2Hz necessitated cycling at
an angular velocity of 2Hz to ensure maximal reward. Under BMI con-
trol, the output of the decoder had corresponding units. For example, a
2Hz angular velocity of the neural trajectory produced movement at the
same speed as 2Hz physical cycling (see Neural features for speed-track-
ing for details of decoder). Reward was given throughout the trial so
long as the monkey’s speed was within 0.2Hz of the instructed speed.
We employed both constant and ramping instructed-speed profiles.

Constant profiles were at either 1 or 2Hz. Trials lasted 20 cycles.
After 18 cycles, the primary and secondary targets (described above) dis-
appeared and were replaced by a final stationary target two cycles in
front of the current position. Speed was not instructed during these last
two cycles; the monkey simply had to continue cycling and stop on the
final target to receive a large reward. Analyses of performance were
based on the ;16 cycle period starting when the monkey first honed in
on the correct speed (within 0.2Hz of the instructed speed) and ending
when the speed-instructing cues disappeared 2 cycles before the trial’s
end.

Ramping profiles began with 3 s of constant instructed speed to allow
the monkey to hone in on the correct initial speed. Instructed speed then
ramped, over 8 s to a new value, and remained constant thereafter. As
for constant profiles, speed-instructing cues disappeared after 18 cycles
and the monkey cycled two further cycles before stopping on a final tar-
get. Again, analyses of performance were based on the period from when
the monkey first honed in on the correct speed, to when the speed-
instructing cues disappeared. There were two ramping profiles: one
ramping up from 1 to 2Hz, and one ramping down from 2 to 1Hz.
There were thus four total speed profiles (two constant and two ramp-
ing). These were performed for both cycling directions (presented in
blocks and instructed by color as in the primary task) yielding eight total
conditions. This task was performed by Monkey G, who completed an
average of 166 trials/session over 2 manual-control sessions and an aver-
age of 116 trials/session over three BMI-control sessions. BMI-control
sessions were preceded by 61 to 74 decoder-training trials performed
under manual control. Decoder-training trials employed the two con-
stant speeds and not the ramping profiles. Thus, subsequent BMI-con-
trolled performance had to generalize to these situations.

As will be described below, the speed decoded during BMI control
was low-pass filtered to remove fluctuations due to noise. This had the
potential to actually make the task easier under BMI control, given that
changes in instructed speed were slow within a trial (excepting the onset
and offset of movement). We did not wish to provide BMI control with
an “unfair” advantage compared with manual control. We therefore also
low-pass filtered virtual speed while under manual control. Filtering (ex-
ponential, t = 1 s) was applied only when speed was .0.2Hz, so that
movement onset and offset could remain brisk. This aided the monkey’s
efforts to track slowly changing speeds under manual control.

In manual-control sessions, trials were aborted if there was a large
discrepancy between actual and instructed speed. This ensured that
monkeys tried their best to consistently match speed at all times. A
potential concern is that this could also mask, under BMI control, errors
that would have been observed had the trial not aborted. To ensure that
such errors were exposed, speed discrepancies did not cause trials to
abort when under BMI control. This potentially puts BMI performance
at a disadvantage relative to manual control, where large errors could
not persist. In practice, this was not an issue as large errors were rare.

Neural features for speed-tracking
Although the speed-tracking experiment leveraged the same dominant
neural responses that were used in the primary experiment, some quan-
tities were computed slightly differently. These changes reflected a com-
bination of small improvements (the speed-tracking task was performed
after the primary experiment described above) and modifications to
allow precise control of speed. The probability of moving, pmove, was cal-
culated using a different set of parameters, largely due to changes in re-
cording quality in the intervening time between data collection from the
primary experiment and data collection for the speed-tracking experi-
ment. The bin size was increased to 100ms, and the following state tran-
sition values were used: pmovejstop ¼ :0005 and pstopjmove ¼ :0005. In
addition, we observed that the square-root transform seemed to be hav-
ing a negligible impact at this bin size, so we removed it for simplicity.
To avoid losing rotational features at slower speeds, we dropped the cut-
off frequency of the high-pass filter, applied to the neural firing rates,
from 1 to 0.75Hz.

In computing directionsteady, the same computations were performed
as for the primary experiment, with one exception: a new direction was
not necessarily decoded every millisecond. In order to decode a new
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direction, the following conditions needed to be met: (1) the observed
angular momentums had a Mahalanobis distance of ,4 to the distribu-
tion corresponding to the decoded direction; and (2) the observed angu-
lar momentums had a Mahalanobis distance of .6 to the distribution
corresponding to the opposite direction. These criteria ensured that a
new steady-state direction was only decoded when the angular momen-
tums were highly consistent with a particular direction. When these cri-
teria were not met, the decoder continued to decode the same direction
from the previous time step. This improved decoding but did not pre-
vent the decoder from accurately reversing direction when the monkey
stopped and reversed his physical direction (e.g., between a forward and
backward trial).

Speed was computed identically in the EARLY and STEADY states,
by decoding directly from the rotational plane corresponding to the
decoded direction. A coarse estimate of speed was calculated as the de-
rivative of the phase of rotation:

u 9 tð Þ ¼
du f

dt
; direction tð Þ ¼ 11

du b

dt
; direction tð Þ ¼ �1

8>><
>>:

where u f tð Þ and u b tð Þ are the phases within the two planes of the neural
state estimate x̂t , direction corresponds to directionearly while in the
EARLY state and directionsteady while in the STEADY state, and the de-
rivative u 9 is computed in units of Hz. The coarse speed estimate, u 9,
was then smoothed with an exponential moving average (t = 500ms) to
generate the variable speed. Saturation limits were set such that, when
moving, speed never dropped below 0.5Hz or exceeded 3.5Hz, to
remain in the range at which monkeys can cycle smoothly. On entry
into EARLY or STEADY from either INIT or EXIT, speed was reset to a
value of 1.5Hz. Thus, when starting to move, the initial instantaneous
value of speed was set to an intermediate value and then relaxed to
a value reflecting neural angular velocity.

The speed-tracking task employed two new conditions for decoder
state transitions. First, transitions from INIT to EARLY required that a
condition termed “confident initial direction decode” was obtained. This
condition was met when the Mahalanobis distance from the neural state
in the initial-direction subspace to either the forward or backward distri-
butions dropped below 4. Second, transitions into the EXIT state
required (in addition to a drop in pmove) that the observed angular
momentums (L) belong to a set termed “Stationary.” This set was defined
as all L with a Mahalanobis distance of ,4 to the “stopped” distribution
of angular momentums, which was learned from the training set.

Data and code accessibility
Datasets and code implementing the decoders are available on request.

Results
Behavior
We trained 2 monkeys (Monkeys G and E) to rotate a hand-held
pedal to move through a virtual environment (Fig. 1). All motion
was along a linear track—no steering was necessary. Consistent
with this, a single pedal was cycled with the right arm only. Our
goal when decoding was to reconstruct the virtual self-motion
produced by that single pedal. On each trial, a target appeared in
the distance. To acquire that target, monkeys produced virtual
velocity in proportion to the rotational velocity of the pedal. The
color of the environment (lush and green vs desert-like and tan)
instructed cycling direction. When the environment was green
(Fig. 1a, left), forward virtual motion was produced by cycling
“forward” (i.e., with the hand moving away from the body at the
top of the cycle). When the environment was tan (Fig. 1a, right),
forward virtual motion was produced by cycling “backward” (the
hand moving toward the body at the top of the cycle). Cycling in
the wrong direction produced motion away from the target.

Trials were presented in blocks of forward or backward trials.
Within each block, targets were separated by a randomized dis-
tance of 2, 4, or 7 cycles. Acquisition of a target was achieved by
stopping and remaining stationary “on top” of the virtual target
for a specified time. Reward was then given and the next target
appeared.

Monkeys performed the task well, moving swiftly between
targets, stopping accurately on each target, and remaining sta-
tionary until the next target was shown. Monkeys cycled at a
pace that yielded nearly linear progress through the virtual envi-
ronment (Fig. 1b). Although not instructed to cycle at any partic-
ular angular velocity, monkeys adopted a brisk ;2Hz rhythm
(Fig. 1c). Small ripples in angular velocity were present during
steady-state cycling; when cycling with one hand, it is natural for
velocity to increase on the downstroke and decrease on the
upstroke. Success rates were high, exceeding 95% in every session
(failures typically involved overshooting or undershooting the
target location). This excellent performance under manual con-
trol provides a stringent bar by which to judge performance
under BMI control.

BMI control was introduced after monkeys were adept at per-
forming the task under manual control. Task structure and the
parameters for success were unchanged under BMI control, and
no cue was given regarding the change frommanual to BMI con-
trol. For a BMI session, the switch to BMI control was made after
completion of 50 decoder-training trials performed under man-
ual-control (25 forward and 25 backward 7 cycle trials). The de-
coder was trained on these trials, at which point the switch was
made to BMI control for the remainder of the session. For
Monkey G, we occasionally included a session of manual-control
trials later in the day to allow comparison between BMI and
manual performance. For Monkey E, we used separate (inter-
leaved) sessions to assess manual-control performance because
he was willing to perform fewer total trials per day.

During both BMI control and manual control, the monkey’s
ipsilateral (noncycling) arm was restrained. The contralateral
(cycling) arm was never restrained. We intentionally did not dis-
suade the monkey from continuing to physically cycle during
BMI control. Indeed, our goal was that the transition to BMI
control would be sufficiently seamless to be unnoticed by the
monkey, such that he would still believe that he was in manual
control. An advantage of this strategy is that we are decoding
neural activity when the subject attempts to actually move, as a
patient presumably would. Had we insisted the arm remain sta-
tionary, monkeys would have needed to actively avoid patterns
of neural activity that drive movement—something a patient
would not have to do. Allowing the monkey to continue to move
normally also allowed us to quantify decoder performance via
direct comparisons with intended (i.e., actual) movement. This is
often not possible when using other designs. For example, in
Rajangam et al. (2016), performance could only be assessed via
indirect measures (e.g., time to target) because what the monkey
was actually intending to do at each moment was unclear. We
considered these advantages to outweigh a potential concern: a
decoder could potentially “cheat” by primarily leveraging activity
driven by proprioceptive feedback (which would not be present
in a paralyzed patient). This is unlikely to be a large concern.
Recordings were made from motor cortex, where robust neural
responses precede movement onset. Furthermore, we have docu-
mented that motor cortex population activity during cycling is
quite different from that within the proprioceptive region of pri-
mary somatosensory cortex (Russo et al., 2018). Thus, while pro-
prioceptive activity is certainly present in motor cortex (Lemon

226 • J. Neurosci., January 12, 2022 • 42(2):220–239 Schroeder, Perkins et al. · Virtual Self-Motion Using Task-Specific Subspaces



et al., 1976; Fetz et al., 1980; Suminski et al., 2009; Schroeder et
al., 2017), especially during perturbations (Pruszynski et al.,
2011), the dominant features of M1 activity that we leverage are
unlikely to be primarily proprioceptive.

Our goal was to use healthy animals to determine strat-
egies for leveraging the dominant structure of neural activity.
This follows the successful strategy of BMI studies that lever-
aged the well-characterized structure of activity during
reaching. Of course, the nature of the training data used to

specify decode parameters (e.g., the weights defining the key
neural dimensions) will necessarily be different for a healthy
animal that cannot understand verbal instructions and an
impaired human that can. We thus stress that our goal is to
determine a robust and successful decode strategy that works
in real time during closed-loop performance. We do not
attempt to determine the best approach to parameter specifi-
cation, which in a patient would necessarily involve intended
or imagined movement.

Figure 1. A cycling task that elicits rhythmic movements. a, Monkeys rotated a hand-held pedal forward (left; cued by a green background) or backward (right; cued by a tan background)
to progress through a virtual environment. Bottom traces, Pedal kinematics (vertical position) and the resulting virtual world position for two example manual-control trials. On both of these
trials (one forward and one backward), the monkey progressed from one target to another by cycling 7 cycles. b, Trial-averaged virtual position from a typical manual-control session. Each trace
plots the change in virtual position (from a starting position of zero) for one of six conditions: forward or backward for 2, 4, or 7 cycles. Black circle represents the time of movement onset.
Trials were averaged after being aligned to movement onset, and then scaled such that the duration of each trial matched the average duration for that condition. c, Trial-averaged pedal rota-
tional velocity from the same session, for the same six conditions. d, Firing rates of two example units. Trial-averaged firing rates (computed after temporally aligning trials) are shown for two
conditions: forward (green) and backward (red) for 7 cycles. Black circles represent the timing of movement onset and offset.
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Neural activity and decoding strategy
We recorded motor cortical activity using 96-channel Utah
arrays. For Monkey G, one array was implanted in M1 and a sec-
ond in PMd. For Monkey E, a single array was implanted in M1.
For each channel, we recorded times when the voltage crossed a
threshold. Threshold crossings typically reflected individual
spikes from a small handful of neurons (a multiunit). Spikes
from individual neurons could be clearly seen on many
channels, but no attempt was made to spike-sort. The bene-
fit of sorting is typically modest when controlling a pros-
thetic device (Christie et al., 2015), and reduced-dimension
projections of motor cortex population activity are similar
whether based on single units or multiunits (Trautmann et
al., 2019). Unit activity was strongly modulated during cy-
cling (Fig. 1d). The phase, magnitude, and temporal pattern
of activity depended on whether cycling was stopped,

moving forward (green traces) or moving backward (red
traces). A key question is how these unit-level features trans-
late into population-level features that might be leveraged to
estimate intended motion through the virtual environment.

In traditional decoding approaches (Fig. 2a), neural activity is
hypothesized (usefully if not literally) to encode kinematic sig-
nals, which can be decoded by inverting the encoding scheme.
Although nonlinear methods (e.g., Kalman filtering of the neural
state) are often used to estimate neural activity, the final conver-
sion to a kinematic command is typically linear or roughly so.
To explore the feasibility of this approach in the present task, we
used ridge regression to identify neural dimensions in which ac-
tivity correlated well with kinematics. For each kinematic vari-
able, the degree of regularization was chosen to maximize
generalization R2—how well the kinematic variable could be
reconstructed from single-trial activity in that neural dimension

Figure 2. Different decode strategies leverage neural signals with different magnitudes. a, In the traditional decoding strategy, neural firing rates are assumed to predominantly encode the
key variables. The encoding model is usually assumed to be roughly linear when variables are expressed appropriately. For example, cosine tuning for reach velocity is equivalent to a linear de-
pendence on horizontal and vertical velocity. The goal of decoding is to invert encoding. Thus, decoding dimensions should capture the dominant signals in the neural data (because those are
what is encoded). b, Variance of the neural population response captured by dimensions used to decode kinematic parameters (teal bars) and muscle activity (light teal bar). Variance captured
was computed based on trial-averaged firing rates, and thus quantifies to the degree to which each neuron’s firing rate (as opposed to its noisy spiking) contains a contribution from the signal
captured by each dimension. Left subpanel, Neural variance captured (left axis) for dimensions correlating with kinematic variables (individual variables shown separately) and muscles (average
across 19 recordings, SE computed across recordings). Also shown are the associated generalized R2 values (right axis) for each decoder. Right subpanel, Total variance captured by subspaces
spanned by kinematic-decoding dimensions, muscle-decoding dimensions, or both. (These are not the sum of the individual variances as dimensions were not always orthogonal.) We had dif-
ferent numbers of EMG recordings per day and thus always selected a subset of 5. Variance captured by the top five principal components is shown for comparison. In both subpanels, data are
from three manual-control sessions where units (192 channels per day) and muscles (5-7 channels per day) were recorded simultaneously. Each bar/point with error bars plots the average and
SE across sessions. c, Example cross-validated regression performance for offline decoding of angular velocity. R2 is the coefficient of determination for the segment of data shown. d, Example
cross-validated regression performance for offline decoding of horizontal and vertical pedal position. R2 is the coefficient of determination for the segment of data shown, same time period as
in c. e, A new strategy that can be applied, even if the dominant signals do not have the goal of encoding. This strategy seeks to find neural response features that have a robust relationship
with the variable one wishes to decode. That relationship may be complex or even incidental but is useful if it involves high-variance response features. f, Similar plot to b, but for the dimen-
sions on which our decoder was built. Left subpanel, Neural variance captured for each of these eight dimensions. Right subpanel, Neural variance captured by the eight-dimensional subspace
spanned by those dimensions. Variance captured by the top eight principal components is shown for comparison.
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(Fig. 2b, orange symbols). We then computed the neural variance
captured, which quantifies the magnitude of the neural signals in
that dimension (Fig. 2b, dark teal bars). By definition, a high-var-
iance signal makes a large contribution to the response of many
neurons while a low-variance signal makes a small contribution
(i.e., most aspects of neural responses do not resemble that sig-
nal). To illustrate expectations, consider the “population vector”
hypothesis in which a neuron’s firing rate is the dot product of a
preferred direction with a velocity vector (Moran and Schwartz,
1999). Velocity-decoding dimensions would capture consider-
able neural variance. Given the heterogeneity of neural responses
(Churchland and Shenoy, 2007), few would expect velocity-
encoding dimensions to capture all neural variance. Yet variance
captured should be reasonably high given that correlations
between firing rates and external parameters are thought to be
prevalent (Kandel et al., 2021) and useful (Schwartz, 2007).
Indeed, this is precisely why kinematic-encoding dimensions
have been heavily leveraged for BMI decoding during reach-like
tasks.

We found that, during cycling, the dimensions that best
reconstructed kinematic signals all captured very little neural
variance (Fig. 2b). The neural variance captured could not be
increased via regularization without decreasing generaliza-
tion R2 (i.e., without reducing the correlation with kinemat-
ics). Neural variance captured was also low for dimensions
found to correlate well with muscle activity (Fig. 2b, light teal
bars). Results were similar (with slightly less variance cap-
tured) if we identified dimensions using L1 regularization or
no explicit regularization. This analysis was performed at the
population level and was based on trial-averaged firing rates,
to give decode dimensions the best possible chance of cap-
turing variance. A related effect was observed when analyz-
ing single-neuron, single-trial responses. If the decoding
dimension for a given variable (e.g., horizontal velocity) cap-
tures little population-level variance, then that variable
makes only a weak contribution to the activity of most neu-
rons and firing rates should typically correlate weakly with
that variable. This was indeed the case. For example, across
neurons, the median correlation of activity with horizontal
and vertical velocity was 0.09 and 0.33. Even the “best” neu-
rons did not show strong correlations (the 95th percentile
correlations were 0.19 and 0.52). Correlations increased only
slightly if, for each neuron, we correlated activity with velocity in
its “preferred direction” (found via regression). The median corre-
lation was 0.37, and the 95th percentile correlation was 0.57.
Correlations were not due to neural activity leading kinematic pa-
rameters; we independently optimized the lead/lag of each
neuron.

The strikingly low (,5%) neural variance captured in kine-
matic-correlating dimensions was initially surprising because sin-
gle-neuron responses were robustly sinusoidally modulated, just
like many kinematic variables. Yet sinusoidal response features
were often superimposed on other response features (e.g., overall
shifts in rate when moving vs not moving). Sinusoidal features
also displayed phase relationships, across forward and backward
cycling, inconsistent with kinematic encoding. This underscores
that, when correlations are incidental, one cannot count on them
being consistently present across behaviors. Furthermore, which
correlations are more prevalent can also change. During reaching,
correlations are typically strongest with velocity (a consequence of
phasic activity), while in the present case correlations were slightly
higher for position, both in terms of generalization R2 and in
terms of neural variance captured.

These findings extend those of Russo et al. (2018), who found
that the largest components of neural activity during cycling (the
top two principal components, which together captured ;35%
of the neural variance) did not resemble velocity. Yet that result
did not rule out the possibility that kinematic signals could still
be sizeable. As pointed out by Jackson (2018) and acknowledged
by Russo et al. (2018), the dominant signals could still have
reflected a joint representation of kinematic signals and their
derivatives (e.g., vertical hand position and velocity). Furthermore,
a signal can be sizeable even if it is not isolated in the top two prin-
cipal components; indeed, the majority of variance lies outside
those two dimensions. The present data reveal that both velocity-
and position-correlating signals are very small: 10-fold smaller
than the top two PCs. The fact that kinematic-correlating signals
are small during some tasks (cycling) but sizeable in others (reach-
ing) supports the view that they are most likely incidental.

Of course, even an incidental correlation could be useful. Yet
the fact that kinematic-correlating neural dimensions are low-
variance makes them a challenging substrate for decoding. For
example, we identified a dimension where the projection of trial-
averaged neural activity correlated with angular velocity, which
is conveniently proportional to the quantity we wish to decode
(velocity of virtual self-motion). However, because that dimen-
sion captured relatively little variance (1.2 6 0.2% of the overall
population variance; SE across three sessions), the relevant signal
was variable on single trials (Fig. 2c) and the correlation with
angular velocity was poor. Generalization R2 was 0.63 for the seg-
ment of data shown, and was even lower when all data were con-
sidered (R2 = 0.516 0.15, SE across three sessions). Any decode
based on this signal would result in many false starts and false
stops. This example illustrates a general property: single-trial var-
iability is expected for any low-variance signal estimated from a
limited number of neurons.

We also considered the alternative strategy of first decoding
horizontal and vertical hand position. We chose position rather
than velocity (which typically dominates reach-BMI decoding)
because correlations with position were slightly stronger (com-
pare orange symbols in Fig. 2b). A reasonable strategy would be
to convert a two-dimensional position decode (Fig. 2d) into a
one-dimensional self-motion command. Possible approaches
for doing so include deciphering where on the circle the hand is
most likely to be at each moment, computing the angular veloc-
ity of the neural state, or computing its angular momentum.
However, consideration of such approaches raises a deeper ques-
tion. If we are willing to nonlinearly decode a one-dimensional
quantity (self-motion) from a two-dimensional subspace, why
stop at two dimensions? Furthermore, why not leverage dimen-
sions that capture most of the variance in the population
response, rather than dimensions that capture a small minority?
Projections onto high-variance dimensions have proportionally
less contribution from spiking variability. They are also less likely
to be impacted by electrical interference or recording instabilities
which, while of little concern in a controlled laboratory environ-
ment, are relevant to the clinical goals of prosthetic devices. One
should thus, when possible, leverage multiple dimensions that
jointly capture as much variance as possible. We term this
approach (Fig. 2e) task-specific subspace decoding because it
seeks one or more subspaces that capture robust response fea-
tures as the subject attempts to move within the context of a par-
ticular task (in the present case, while generating a rhythmic
movement to produce self-motion). Both the population-level
response features and the subspaces themselves may be specific
to that task. The necessity of task-specific decoding is already
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well recognized when tasks are very different (e.g., reaching vs
speaking), but has not been explored within the context of differ-
ent tasks normally performed with the same limb.

To pursue this strategy, we identified three high-variance sub-
spaces. The first was spanned by four “rotational” dimensions
(two each for forward and backward cycling), which captured el-
liptical trajectories present during steady-state cycling (Russo et
al., 2018). The second was a single “moving-sensitive” dimen-
sion, in which the neural state distinguished whether the monkey
was stopped or moving regardless of movement direction
(Kaufman et al., 2016). The third was a triplet of “initial-direc-
tion” dimensions, in which cycling direction could be transiently
distinguished in the moments after cycling began. In subsequent
sections, we document the specific features present in these high-
variance subspaces. Here we concentrate on the finding that the
eight-dimensional subspace spanned by these dimensions cap-
tured 70.9 6 2.3% of the firing-rate variance (Fig. 2f). Note that
because dimensions are not orthogonal, the total captured var-
iance is not the sum of that for each dimension. The “initial-
direction” dimensions, for example, overlap considerably with
the “rotational” dimensions. Nevertheless, the total captured var-
iance was only modestly less than that captured by the top eight
PCs (which capture the most variance possible), and much
greater than that captured by spaces spanned by dimensions

where activity correlated with kinematics and/or muscle activity
(Fig. 2b). We thus based our BMI decode on activity in these
eight high-variance dimensions. It is likely that, within the
remaining 29.1% of the variance, there exist additional features
that could be leveraged in other ways. We chose not to pursue
that possibility as BMI performance (documented below) was al-
ready excellent.

Direction of steady-state movement inferred from rotational
structure
The dominant feature of the population neural response during
steady-state cycling was a repeating elliptical trajectory (Russo et
al., 2018). Thus, the core of our decoder was built on this feature,
leveraging the fact that forward-cycling and backward-cycling
trajectories occurred in nonidentical subspaces (Fig. 3a). We
employed an optimization procedure to find a two-dimensional
“forward plane” that maximized the size of the forward trajectory
relative to the backward trajectory. We similarly found an analo-
gous “backward plane.” These two planes cleanly captured rota-
tions of the trial-averaged neural state (Fig. 3a) and, with
filtering (see Materials and Methods), continued to capture rota-
tions on individual trials (Fig. 3b). Forward and backward trajec-
tories were not perfectly orthogonal. Nevertheless, the above
procedure identified orthogonal planes where strongly elliptical

Figure 3. Leveraging rotational trajectories to decode velocity. a, Trial-averaged population activity, during a manual-control session, projected onto the forward (top) and backward (bot-
tom) rotational planes. Data are from 7 cycle forward (green) and backward (red) conditions. By design, the forward plane primarily captures rotational trajectories during forward cycling, and
vice versa. Boldly colored portions of each trace highlight rotations during the middle cycles (a period that excludes the first and last half cycle of each movement). Colored arrows indicate rota-
tion direction. Light portion of each trace corresponds to the rest of the trial. In addition to smoothing with a causal filter, neural data have been high-pass filtered to match what was used
during BMI control. Data are from Monkey G. b, As in a, but for six example single trials, one for each of the three distances in the two directions. c, Example angular momentum (L) in the
backward plane (dark blue) and forward plane (bright blue) during six trials of BMI control. Black represents velocity of the pedal. Although the pedal was disconnected from the task, this pro-
vides a useful indication of how the monkey was intending to move. Data are from the same day shown in a and b. d, Probability densities of angular momentums found from the decoder
training trials collected on the same day. e, Histograms of BMI-control velocity (bottom) and (disconnected) pedal velocity (top) for all times the decoder was in the STEADY state (see
Materials and Methods), across all BMI-control sessions.
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trajectories were present for only one cycling direction. The data
in Figure 3a, b are from a manual-control session (which used
multiple distances) to illustrate this design choice. In practice,
planes were found based on decoder-training trials (7 cycle only)
after trial-averaging.

To convert the neural state in these two planes into a one-
dimensional decode of self-motion, we compared angular mo-
mentum (the cross product of the state vector with its derivative)
between the two planes. When moving backward (first 3 cycling
bouts in Fig. 3c), angular momentum was sizeable in the back-
ward plane (dark blue) but not the forward plane (bright blue).
The opposite was true when moving forward (subsequent 3
bouts). Using the decoder-training trials, we considered the joint
distribution of forward-plane and backward-plane angular

momentums. We computed distributions when stopped (Fig. 3d,
orange), when cycling forward (green), and when cycling back-
ward (red) and fit a Gaussian to each. During BMI control, we
computed the likelihood of the observed angular momentums
under each of the three distributions. If likelihood under the
stopped distribution was high, decoded velocity was zero.
Otherwise, likelihoods under the forward and backward distribu-
tions were converted to a virtual velocity that was maximal when
one likelihood was much higher and slower when likelihoods
were more similar. Maximum decoded velocity was set based on
the typical virtual velocity under manual control (;2Hz).

Distributions of decoded velocity when moving under BMI
control (Fig. 3e, bottom) were similar to the distributions of ve-
locity that would have resulted were the pedal still operative (Fig.

Figure 4. Decoder performance. a, Summary of the cross-correlation between decoded virtual velocity under BMI control, and the virtual velocity that would have been produced by the
pedal (which monkeys continued to manipulate normally). Each symbol corresponds to one BMI-control session and plots the peak of the cross-correlation versus the lag where that peak
occurred. Colors represent success rate during that session. b, Example manual-control performance for 6 consecutive trials (3 forward and 3 backward). World position is expressed in terms of
the number of cycles of the pedal needed to move that distance. For plotting purposes, the position at the beginning of this stretch of behavior was set to zero. Bars represent the time that
targets turned on and off (horizontal span) and the size of the acceptance window (vertical span). c, Similar plot during BMI control. For ease of comparison, world position is still expressed in
terms of the number of physical cycles that would be needed to travel that far, although physical cycling no longer had any impact on virtual velocity. d, Success rate for both monkeys. Each
symbol plots, for one session, the proportion of trials where the monkey successfully moved from the initial target to the final target, stopped within it, and remained stationary until reward
delivery. Dashed line at 1 for reference. e, Target acquisition times for successful trials. Middle lines indicate median. Box edges represent the first and third quartiles. Whiskers include all non-
outlier points (points,1.5 times the interquartile range from the box edges). Data are shown separately for the three target distances. f, Histograms of stopping location from both monkeys.
Analysis considers both successful and failed trials. Far right, Bars represent the proportion of trials where the monkey failed for reasons other than stopping accuracy per se. This included trials
where monkeys disrespected the reaction time limits, abandoned the trial before approaching the target, or passed through the target without stopping.
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3e, top). Importantly, forward and backward
distributions overlapped little; the direction
of decoded motion was almost always correct.
Decoded velocity was near maximal at most
times, especially for Monkey G. The decoded
velocity obtained from these four dimensions
constituted the core of our decoder. We docu-
ment the performance of that decoder in the
next section. Later sections describe how
aspects of the decoder were fine-tuned by lev-
eraging the remaining four dimensions.

Performance
Monkeys performed the task very well under
closed-loop BMI control (Fig. 4 and Movie
1). Monkeys continued to cycle as normal,
presumably not realizing that the pedal had
been disconnected from the control system.
The illusion that the pedal still controlled
the task was supported by a high similarity
between decoded virtual velocity and int-
ended virtual velocity (i.e., what would have
been produced by the pedal were it still con-
trolling the task). The cross-correlation be-
tween these was 0.93 6 0.02 and 0.81 6 0.03
(Monkeys G and E, mean6 SD across sessions) with a short lag:
766 4ms and 1026 7ms (Fig. 4a). There were also few false
starts; it was exceedingly rare for decoded motion to be non-zero
when the monkey was attempting to remain stationary on top of
a target. False starts occurred on 0.29% and 0.09% of trials
(Monkeys G and E), yielding an average of 1.9 and 0.12 occur-
rences per day. This is notable because combatting unintended
movement is a key challenge for BMI decoding. The above fea-
tures—high correlation with intended movement, low latency,
and few false starts—led to near-normal performance under BMI
control (Fig. 4b,c). Success rates under BMI control (Fig. 4d, ma-
genta symbols) were almost as high as under manual control
(open symbols), and the time to move from target to target was
only slightly greater under BMI control (Fig. 4e).

Although the BMI decoder was trained using only data from
7 cycle movements, monkeys successfully used it to perform ran-
dom sequences with different distances between targets (specifi-
cally, random combinations of 2, 4, and 7 cycles). For example,
in Figure 4c, the monkey successfully performs a sequence
involving 2, 7, and 2 cycle forward movements, followed by 2, 4,
and 4 cycle backward movements. The only respect in which
BMI control suffered noticeably was accuracy in stopping on the
middle of the target. Under manual control, monkeys stopped very
close to the target center (Fig. 4f, gray histogram), which always cor-
responded to the “pedal-straight-down” position. Stopping was less
accurate under BMI control (magenta histogram). This was partly
due to the fact that, because virtual self-motion was swift, small
errors in decoded stopping time became relevant. A 100ms error
corresponded to;0.2 cycles of physical motion. The average SD of
decoded stopping time (relative to actual stopping time) was 133
(Monkey G) and 99ms (Monkey E). Greater stopping error in
BMI-control trials was also due to an incidental advantage of man-
ual control: the target center was aligned with the pedal-straight-
down position, a fact that monkeys leveraged to stop very accu-
rately. This strategy was unavailable during BMI control because
the correct moment to stop rarely aligned perfectly with the pedal-
straight-down position (this occurred only if decoded and intended

virtual velocity matched perfectly when averaged across the cycling
bout).

Performance was modestly better for Monkey G versus
Monkey E. This was likely due to the implantation of two arrays
rather than one. Work ethic may also have been a factor;
Monkey E performed fewer trials under both BMI and manual
control. Still, both monkeys could use the BMI successfully start-
ing on the first day, with success rates of 0.87 and 0.74 (Monkeys
G and E). Monkey G’s performance rapidly approached his man-
ual-control success rate within a few sessions. Monkey E’s per-
formance also improved quickly, although his manual-control
and BMI-control success rates were mostly lower than Monkey
G’s. The last five sessions involved BMI success rates of 0.97 and
0.96 for the 2 monkeys. This compares favorably with the overall
averages of 0.98 and 0.95 under manual control. Although this
performance improvement with time may relate to adaptation,
the more likely explanation is simply that monkeys learned to
not be annoyed or discouraged by the small differences in
decoded and intended velocity.

State machine
The performance documented above was achieved using a state-
dependent decode (Fig. 5). The rotational-feature-based strategy
(described above) determined virtual self-motion in the
“STEADY” state. Thus, self-motion could be forward, backward,
or stopped while in STEADY. The use of other states was not
strictly necessary but helped fine-tune performance. State transi-
tions were governed by activity in the moving-sensitive dimen-
sion, which was translated into a probability of moving, pmove,
computed as described in the next section. If pmove was low, the
STOP state was active and decoded virtual velocity was enforced
to be zero. For almost all times when the STOP state was active,
the angular-momentum-based strategy would have estimated
zero velocity, even if it were not enforced. Nevertheless, the use
of an explicit STOP state helped nearly eliminate false starts.

The use of a STOP state was also useful because exiting STOP
indicated a likely transition to moving, allowing us to leverage
the initial-direction dimensions. When pmove became high, the

Movie 1. BMI and manual control of primary task (Monkey G, October 4, 2018). Both manual (left) and BMI control
(right) sessions were performed on the same day, which was the fourth day of BMI control. Manual and BMI control suc-
cess rates were very similar on this day (see Fig. 3d). The task required that the monkey turn the hand pedal in the
instructed direction to move through the virtual environment, stop on top of a lighted target, and remain still while col-
lecting juice reward. The color of the landscape indicated whether cycling must be “forward” (green landscape) or “back-
ward” (tan landscape). There were six total conditions, defined by cycling direction and target distance (2, 4, or 7
cycles). [View online]
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INIT state was entered, but decoded velocity remained zero.
After 175ms, the EARLY state was entered and velocity was
decoded using the initial-direction dimensions (see below). After
an additional 200ms, the STEADY state was entered. The decode
then depended only on the four rotational dimensions. Values of
pmove , 0.1 always produced a transition back to STOP. This typ-
ically occurred from STEADY to STOP as the movement suc-
cessfully terminated. However, it could also occur from the other
two states. This was especially helpful if, when stopped, pmove

became high only briefly (and thus presumably erroneously). In
such cases, the state transitioned from INIT back to STOP with
decoded velocity never departing from zero.

Inferring the probability of moving
Decoders that directly translate neural state to cursor velocity
have historically experienced difficulty remaining stationary
when there is no intended movement. The ability to successfully
decode stationarity is of even greater importance for self-motion.

This was central to our motivation for using a state machine
with distinct stopped and moving states (Kemere et al., 2008;
Ethier et al., 2011; Kao et al., 2017a). To govern state transitions,
we leveraged the moving-sensitive dimension: the dimension
where neural activity best discriminated whether the monkey was
moving versus stopped, identified using linear discriminant analysis.
Projecting trial-averaged data onto that dimension (Fig. 6a)
revealed a transition from low to high just before movement
onset, and back to low around the time movement ended.
This pattern was remarkably similar regardless of cycling
direction (red and green traces largely overlap). Activity in
this dimension behaved similarly for single trials (Fig. 6b).
The data in Figure 6a, b are from a manual-control session,
and illustrate why activity in this dimension was considered
useful. Before BMI decoding, the moving-sensitive dimen-
sion was identified based on the 50 decoder-training trials,
and we considered the distribution of activity in that
dimension when stopped (Fig. 6c, orange) and moving

Figure 5. State machine diagram. BMI motion was determined by a state machine with four states: STOP, INIT, EARLY, and STEADY, corresponding to the different stages of a typical trial.
The output of the state machine at every millisecond was an estimate of decoded velocity through the virtual environment, vdec , which was then smoothed and integrated to compute virtual
position. Black arrows indicate the typical path of a successful BMI trial. Gray arrows indicate all other possible transitions. State transitions were governed by activity in the moving-sensitive
dimension, which was translated into a probability of moving, pmove. While pmove was low, the STOP state was active and decoded velocity was set to zero. When pmove became high, the INIT
state was entered but decoded velocity remained zero. If pmove remained high for 175 ms, the EARLY state was entered and velocity was decoded using the initial-direction dimensions. After
another 200 ms, the STEADY state was entered and decoded velocity depended on the neural state in the rotational dimensions. If pmove dropped below 0.1 at any point, STOP was reentered.
Blue represents states in which progress is made through the virtual environment. Orange represents states in which BMI motion is held at zero.

Figure 6. Leveraging the moving-sensitive dimension to infer probability of moving. a, Trial-averaged population activity, during a manual-control session, projected onto the moving-sensi-
tive dimension (same session and trials as Fig. 5a). b, As in a, but for six example single trials (same trials as in Fig. 3b). c, Histogram of the neural state projected onto the moving-sensitive
dimension for decoder training data. The neural state was measured every 10 ms, at times when the monkey was stopped within a target (orange) or actively cycling (blue). Traces represent
Gaussian fits used to compute pmove . d, Example time course, during BMI control, of pmove (blue) and the active state (magenta). Gray regions represent times when the decoder produced vir-
tual movement (i.e., when in EARLY or STEADY). These times corresponded well to times when the monkey was intending to move, as indicated by the angular velocity of the disconnected
pedal (black). Transient inappropriate spikes in pmove (as seen here at;12 s) do not lead to false starts because either they do not exceed 0.9, as was the case here, or they are too brief and
the EARLY state is never reached. Same example data as in Figure 3c.
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(blue). We fit a Gaussian distribution to each, which was
then used during BMI-control when computing the proba-
bility of moving, pmove.

To compute pmove, we used an HMM (Kemere et al., 2008;
Kao et al., 2017a) while allowing the current estimate of pmove to
depend on all prior observations and thus to be robust with
respect to the modest overlap in the stopped and moving distri-
butions. An HMM can ignore transient weak evidence for mov-
ing while still transitioning swiftly given strong evidence. As a
technical aside, because the HMM assumes observations are in-
dependent, we did not use filtered rates (which were used for all
other aspects of the decode) but instead considered spike counts
in nonoverlapping 10ms bins. This was true both when deter-
mining the moving-sensitive dimension and while under BMI-
control.

During BMI control, pmove (Fig. 6d, blue) was typically near
unity during intended movement (i.e., when the monkey was
actually cycling, black) and near zero otherwise. The value of
pmove determined transitions both out of STOP and into STOP
(Fig. 5). We employed a conservative design; entering EARLY
(the first state that produced virtual movement) required that
pmove exceed 0.9 (to enter INIT) and remain consistently above
0.1 for 175ms (to avoid returning to stop and then transition to
EARLY). This led to a very low rate of false starts (;2 per day
for Monkey G and;1 every 10 days for Monkey E). The transi-
tion to EARLY (Fig. 6d, left edge of gray regions) occurred on
average 117 and 194ms after physical movement onset (Monkeys
G and E). Trial-to-trial variability around these mean values was
modest: SDs were 93 and 138ms (computed within session and
averaged across sessions). As discussed above, estimated stopping
time (when pmove dropped below 0.1) was also decoded with only
modest trial-to-trial variability.

Inferring initial movement direction
Angular momentum of the neural state in the forward and back-
ward planes became substantial a few hundred milliseconds after
pmove became high. Thus, the EARLY state became active before

the direction of movement could be inferred from the elliptical
trajectories. To overcome this problem, we leveraged the three-
dimensional initial-direction subspace. The initial-direction sub-
space comprised the top three PCs found from portions of the
training data surrounding movement onset (a 200ms segment
from each trial, beginning at the time the decoder would enter
the INIT state; see Materials and Methods). The difference
between the trajectory on forward and backward trials began to
grow just prior to physical movement onset, both on average
(Fig. 7a) and on individual trials (Fig. 7b; solid trajectory seg-
ment shows �200 to 175ms relative to movement onset). For
each of the 50 decoder-training trials, we considered the neural
state in these dimensions, measured 175ms after decoded move-
ment onset (Fig. 7c). We fit Gaussian distributions separately for
forward and backward trials.

During BMI control, on transition from INIT to EARLY, we
computed the likelihood of the neural state under each distribu-
tion. A simple winner-take-all computation determined the
direction of virtual velocity during the EARLY state. The infer-
ence of movement direction during EARLY was correct on 94%
and 82% of trials (Monkeys G and E). After 200ms, the
STEADY state was entered and virtual velocity was controlled
thereafter by activity in the rotational dimensions. Figure 7d
illustrates moments (colored regions) where the EARLY state
was active and determined virtual motion (physical pedal veloc-
ity is shown for reference). These moments were brief, and thus
produced only a very modest improvement in time to reach the
target. However, we still employed this strategy because our goal
was to build a BMI decode that closely tracked intended move-
ment and felt responsive to the subject.

Speed control
The excellent performance of the decoder was aided by the rela-
tive simplicity of behavior: when monkeys moved, they did so at
a stereotyped speed. This allowed us to concentrate on building a
decode algorithm that decoded intended direction with accurate
timing, and remained stationary if movement was not intended.

Figure 7. Leveraging initial-direction dimensions to allow low-latency decoding. a, Trial-averaged population activity, during a manual-control session, projected onto two (of three) initial-
direction dimensions (same session and trials as Figs. 3a and 6a). Boldly colored portions of traces highlight�200 to 175 ms relative to physical move onset. Arrows indicate direction of trajec-
tories. b, Same as in a, but for six example single trials (same trials as in Figs. 3b and 6b). c, The location of the neural state, for decoder training data, at the time the state machine (applied
post hoc to that training data) entered the EARLY state. These data (50 total trials) were used to fit two Gaussian distributions. During BMI control, when the EARLY state was entered, virtual
direction was determined by which distribution maximized the data likelihood. d, Example of initial-direction decoding during BMI control. Colored windows represent the times in the EARLY
state, with red and green representing decoded direction. Same example data as in Figures 3c and 6d.

234 • J. Neurosci., January 12, 2022 • 42(2):220–239 Schroeder, Perkins et al. · Virtual Self-Motion Using Task-Specific Subspaces



However, that decode provided only limited control of move-
ment speed. An obvious extension is to allow finer-grained speed
control. This would presumably be desired by users of a self-
motion BMI. Furthermore, speed control provides one possible
way of steering (e.g., by decoding the relative intensity of
intended movement on the two sides of the body). While we do
not attempt that here, we still considered it important to deter-
mine whether the neural features we identified could support
speed control.

That assessment required a task where speed control is neces-
sary for success. We thus trained 1 monkey to track various
speed profiles as he progressed through the virtual environment.
Two floating targets were rendered in the foreground as the
monkey cycled. The distance between them reflected the differ-
ence between actual and instructed speed. Obtaining juice
required aligning the two floating targets while progressing to-
ward a final target, on which he stopped to obtain additional
reward. The task was divided into trials, each of which required
moving a distance equivalent to 20 cycles under manual control.
We used eight trial types, four each for forward and backward
cycling. Two of these used a constant target speed (equivalent to
1 or 2Hz cycling), and two involved a ramping speed (from 1Hz
to 2Hz or vice versa) (Fig. 8a,b). The decoder was trained based
on a small number of decoder-training trials, using only the two
constant speeds, performed at the beginning of each BMI-control
session. Performance comparisons were made with manual-con-
trol sessions that used all conditions.

Our decode strategy was largely preserved from that described
above. However, we used a modified state machine (Fig. 9) and a
slightly different algorithm for transforming rotations of the neu-
ral state into decoded virtual velocity. Direction was still deter-
mined based on which distribution (forward or backward)
produced the higher likelihood of observing the measured angular
momentums (as in Fig. 3d). Once that choice was made, speed
was determined by the angular velocity of the neural state in that
plane. Thus, faster rotational trajectories led to faster decoded vir-
tual velocity. We chose a scaling factor so that a given neural

angular velocity produced the speed that would have been pro-
duced by physical cycling at that angular velocity. Neural angular
velocity was exponentially filtered with a time constant of 500ms.
The filter memory was erased on entry into a movement state
(EARLY or STEADY) from a stopped state (INIT or EXIT) to
allow brisk movement onset (see Materials andMethods).

The above strategy allowed smooth BMI control of move-
ment speed. In fact, it tended to give BMI control an intrinsic
advantage over manual control. In manual control, the angular
velocity of the pedal was naturally modulated within each cycle
(being higher on the downstroke), resulting in a fluctuating vir-
tual velocity. Such fluctuations mildly impaired the ability to
match target speed under manual control. To allow a fair com-
parison, we thus also applied an exponential filter to virtual ve-
locity under manual control. Filters were chosen separately for
BMI (t = 500 ms) and manual control (t = 1000 ms) to maxi-
mize performance. This was done informally, in the earliest ses-
sion, by lengthening the filter until success rate roughly
plateaued. The filter then remained fixed for all further sessions.

Under BMI control, decoded virtual speed closely tracked
instructed speed (Fig. 8a,b and Movie 2). This was true both for
constant speeds and when speed modulated with time, even
though the decoder was not trained on such modulations. To
compare BMI with manual control (which was performed on
separate days), we considered all trials where the monkey com-
pleted the portion of the trial that required matching speed (87%
of trials in arm control, and 79% in BMI control). The monkey
was able to match instructed speed nearly as accurately under
BMI control as under manual control. This was true judged both
by time within the rewarded speed window (Fig. 8c) and by the
error between virtual and instructed velocity (Fig. 8d).

Discussion
Task-specific subspaces
The lack of high-variance kinematic-correlating dimensions is
consistent with Russo et al. (2018) who found that neural

Figure 8. Performance in the modified task requiring speed tracking. a, Instructed velocity and BMI-decoded virtual velocity during 12 contiguous trials of BMI control. b, Expanded view of
one example trial (the last trial from a). The virtual velocity that would have been produced by the pedal is shown in gray for comparison. c, Percentage of time spent in rewarded velocity win-
dow for trials in manual-control (2 sessions, 333 trials) and BMI-control (3 sessions, 349 trials). Center lines indicate median. Box edges represent the first and third quartiles. Whiskers include
all nonoutlier points (points,1.5 times the interquartile range from the box edges). d, Mean absolute error between instructed velocity and virtual velocity for both manual control and BMI-
control sessions. One mean error was computed per trial. Same format as in c.
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trajectories in the top two dimensions
were inconsistent with a representation
of muscle activity or hand velocity. Yet
the findings of Russo et al. (2018) did not
rule out the possibility that kinematic-
correlating dimensions might still be rea-
sonably high variance, even if they were
not dominant. Certainly, this is true
during reaching; the top two dimensions
do not correlate well with kinematics
(Kaufman et al., 2016), but other dimen-
sions do. Furthermore, a combined rep-
resentation of position and velocity was
a plausible, if unappealing, explanation
for the dominant circular trajectories
during cycling (Jackson, 2018). The pres-
ent results rule out these possibilities.
Dimensions where activity correlated
well with kinematics contained very little
variance: ;1%-4% per dimension. The
same was true of dimensions that corre-
lated with muscle activity.

The lack of dimensions where activity
consistently correlates with external vari-
ables accords with the hypothesis that the
largest signals in motor cortex are not
“representational”—they do not encode
variables but are instead essential for
noise-robust dynamics (Churchland et al., 2012; Sussillo et al.,
2015; Seely et al., 2016; Russo et al., 2018). Those dynamics pro-
duce outgoing commands that are representational (they covary
with the variables they control) but are low variance. Because the

dominant neural signals must be produced by noise-robust dy-
namics, they obey the property of low trajectory tangling: similar
neural states avoid being associated with dissimilar derivatives
(Russo et al., 2018). There is little guarantee that the way in
which low tangling is achieved will be the same across tasks. On

Figure 9. State machine diagram for speed-control experiments. BMI motion for the speed-tracking experiment was determined by a state machine with five states: STOP, INIT, EARLY,
STEADY, and EXIT. Each of these states describes how to compute virtual velocity, vdec , which gets integrated every millisecond into virtual position. Black arrows indicate the typical path of a
successful BMI trial (gray arrows indicate all other transitions), and colors differentiate states in which there is progress through the virtual environment (blue) from states in which BMI motion
is zero (orange). In the STOP, INIT, and EXIT states, virtual velocity is simply set to zero. During the EARLY and STEADY states, virtual velocity is computed as the product of decoded direction
and decoded speed, which is computed based on activity in the rotational dimensions. Transitions between the states were determined by pmove (computed from the moving-sensitive dimen-
sion), angular momentum vector L (computed from the rotational planes), and the neural state in the initial-direction dimensions. Details on computing each of the neural features used in this
state machine are provided in Neural features for speed-tracking. While in the STOP state, virtual velocity remains zero. If pmove goes high, the INIT state is entered (time of entry is denoted
tinit), but virtual velocity remains zero. From the INIT state, one of three things can happen: (1) pmove goes low and the movement aborts with a transition back to the STOP state; (2) the neural
state in the initial-direction dimensions becomes sufficiently close to the learned distributions of neural states for forward or backward conditions, triggering a transition to the EARLY state; or
(3) no transition occurs within 500 ms of tinit , triggering a transition to the STEADY state. The INIT state serves to withhold BMI motion in situations where there is a transient spike in pmove
and to delay movement when the early estimate of decoded direction is only weakly confident. The EARLY state dictates how virtual velocity is computed in the early portion of movement
(when,500 ms has elapsed since tinit). The STEADY state determines virtual velocity for the remainder of decoded movement. While in the EARLY or STEADY states, if pmove goes low and the
angular momentums in the rotational planes are consistent with a stationary pedal, a transition will occur to the EXIT state and virtual velocity will again go to zero. After 350 consecutive ms
in the EXIT state, the state machine transitions back to the STOP state. However, if pmove goes high while in the EXIT state, a transition back to either EARLY or STEADY will occur. The transitions
from EXIT back to EARLY and STEADY exist to allow a rapid return to decoded movement if neural activity briefly, erroneously reflects that the monkey is ceasing movement, but then returns
to exhibiting robust activity consistent with an ongoing movement.

Movie 2. BMI and manual control of speed-tracking task (Monkey G, April 18, 2019 and March 27, 2019, respectively).
These examples were selected as representative of performance in this task. In this version of the task, the monkey was
required to track various instructed speed profiles (constant, ramping up, and ramping down) as he progressed through the
environment. A red target was rendered a short distance in front of the monkey, and remained at that distance ahead through-
out the trial. A second, white target drifted ahead or behind the red target to indicate the error between the avatar’s speed
and the instructed speed. Thus, successful speed tracking required aligning these targets on top of one another. Whenever the
error was within the rewarded tolerance window, the white target would light up and juice reward would be dispensed. This
speed-tracking epoch lasted until the monkey was within two cycles of the final turquoise stopping target (total of 20 cycles
from starting position). [View online]
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the contrary, the task often determines the most natural way to
keep tangling low. Thus, the identity and number of high-var-
iance dimensions will likely vary across tasks. This possibility is
supported by network models that perform multiple tasks
(Logiaco et al., 2021; Duncker et al., 2020; Flesch et al., 2021) or
subtasks (Zimnik and Churchland, 2021). When different tasks
require very different dynamics, a very natural way to “switch”
dynamics is to alter the occupied subspace. If this strategy is
employed by the nervous system, then both the intrinsic covari-
ance structure of the neural activity, and the nature of its correla-
tions with kinematics, will likely be task-specific.

While task specificity presents practical challenges for
decoders, it also affords opportunities. We identified subspaces
very differently from most reach-based BMI approaches, and
converted neural activity to movement using different (and often
more nonlinear) approaches. Yet we achieved BMI control that
was sufficiently natural that monkeys appeared not to notice that
the task was no longer under manual control. By most measures
(success rate, time to target), performance under BMI control
was remarkably close to that under manual control. The
main limitation of BMI control was stopping accuracy.
Although our algorithm detected stopping with ;0.1 s preci-
sion, even small discrepancies could lead to the target being
over or undershot by a noticeable amount. A beneficial fea-
ture of our BMI decode is that it almost never produced
movement when it was not intended. With rare exceptions,
truly zero velocity was decoded when the monkey was
intending to remain stopped on the target. We consider this
a particularly important attribute of any self-motion decod-
ing algorithm due to the potentially large consequences of
unintended movement of the whole body.

Perhaps the largest apparent drawback of task-specific decoders
is that they do not offer the promise of across-task generalization,
which has been a longstanding goal in BMI development. Our
approach, being based on reliable but nonrepresentational signals,
remains subject to this drawback (no more or less so than tradi-
tional reaching decoders). However, within-task generalization is
still very much possible. In the current work, training was on 7 cycle
trials only and the decoder generalized to other trial lengths (arbi-
trary distances). Similarly, in the speed-tracking task variant, we
trained on two constant speed profiles (1 and 2 cycles/s) and were
able to decode intermediate speeds that ramped up or down with
time.

Thus, within-task generalization is relatively easy to achieve.
However, to develop a system that can effectively perform multi-
ple tasks (e.g., self-motion, reaching, handwriting), a new task-
specific subspace decoder will likely be necessary for each task.
While we cannot offer a concrete recipe for identifying the neural
features that would best subserve decoding in a given task, being
opportunistic in leveraging high-variance signals is likely to lead
to success. Multiple decoder modules could then be combined.
How this should be accomplished depends on something not yet
known: do subspaces overlap weakly or heavily across tasks?
Heavily overlapping subspaces would complicate decoding; the
decoder would have to decipher the task before knowing which
features to leverage. If subspaces are nearly orthogonal, then the
features relevant to one decoder would conveniently fall in the
null space of decoders for other tasks. A reasonable speculation
is that subspaces will overlap when tasks are similar enough that
relationships with to-be-decoded features are stable (Gallego et
al., 2020), and will be nearly orthogonal when tasks are different
enough that they require very different decoding approaches.
One could, of course, attempt to completely avoid such issues by

focusing on the one subspace that must be preserved across tasks:
that conveying the outgoing motor commands. However, as
noted above, this subspace may be very low variance, making it
both difficult to identify and difficult to leverage without very
large-scale simultaneous recordings.

Population dynamics in decoding
A number of studies have modeled neural dynamics to improve
online (Kao et al., 2015) or offline (Aghagolzadeh and Truccolo,
2016; Kao et al., 2017b; Liu et al., 2019; Gallego et al., 2020)
decoding of movement kinematics. Although these studies
assumed that their low-dimensional dynamics contained kine-
matic coding signals, they allowed for signals that did not corre-
late directly with kinematics to help infer those that do. In linear
decoding, the value of a given decoded variable (e.g., horizontal
velocity) depends on the neural state in just one dimension: the
dimension defined by the regression weights. Nevertheless, infer-
ring the neural state in that dimension may benefit from a dy-
namical model that spans multiple dimensions. Much like the
present approach, this allows the decoder to leverage features
that are robust, even if they do not directly correlate with the ki-
nematic parameters of interest. The present approach extends
this idea to situations where there may be no high-variance
dimensions that can be linearly decoded, and/or where the most
prominent features are not well described by linear dynamics.
Accordingly, any method that improves estimation of the neural
state becomes a useful preprocessing step. Here, we used a linear
Kalman filter (see Materials and Methods), but other techniques
(linear or nonlinear) could be considered in the future (e.g.,
LFADS, Bayesian methods) (Pandarinath et al., 2018). Many
such methods are presently acausal (e.g., LFADS uses knowledge
of the future) but could be adapted for use in real-time
applications.

Another way of leveraging additional dimensions, or even the
full neural state, would be to use a trained RNN to decode pa-
rameters of interest (Sussillo et al., 2012; Anumanchipalli et al.,
2019; Willett et al., 2020). This is a promising approach, and
avoids the need to hand-select features. However, it does not
itself solve the problem of generalization. Through training, these
networks can identify useful and noise-robust features, but can
only do so for the patterns of neural activity included in the
training datasets (e.g., a network trained to decode reaches would
not be able to leverage the covariance structure during cycling).

Self-motion BMIs
In choosing an alternative to traditional reach-based BMI tasks,
we had three reasons for focusing on a BMI for virtual self-
motion. First, our recently developed cycling task naturally lends
itself to this application. Second, BMI-controlled self-motion is
likely to be desired by a large patient population (potentially
much larger than the population that desires BMI-controlled
cursors or robot arms). Third, prior work has demonstrated that
BMI control of self-motion is viable (Libedinsky et al., 2016;
Rajangam et al., 2016). In particular, Rajangam et al. (2016) dem-
onstrated BMI control of a physical wheelchair based on neural
activity recorded frommonkey motor and somatosensory cortex.
Our work supports their conclusion that BMI-controlled self-
motion is possible, and demonstrates the feasibility of an alterna-
tive decode strategy. Rajangam et al. (2016) employed a tradi-
tional decode strategy: linear filters transformed neural activity
into the key variables, translational and angular velocity. That
strategy allowed monkeys to navigate ;2 m to a target (which
had to be approached with an accuracy of ;60.2 m, or 10% of
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the distance traveled) in an average of 27–49 s (depending on the
monkey and degree of practice). In our task, monkeys had to
stop with similar relative accuracy:60.5 cycles, or 7% of the dis-
tance traveled for a 7 cycle movement. They traversed those 7
cycles in ;4 s under BMI control (averages of 4.3 and 3.7 s for
Monkeys G and E). While this is ;10-fold faster, we stress that
movement durations are not directly comparable between our
task and theirs. Success requirements differed in multiple ways.
For example, Rajangam et al. (2016) required that monkeys turn
en route (which adds considerable challenge) but did not require
them to stop on the target location. Yet while direct comparison
is not possible, a 10-fold improvement in time-to-target argues
that task-specific subspace decode strategies can be effective and
should be explored further.

An obvious limitation of the current study is that we did not
explore strategies for steering, which would be essential to a real-
world self-motion prosthetic. There exist multiple candidate
strategies for enabling steering. Rajangam et al. (2016) used a
Wiener filter to decode angular velocity of the body. While
straightforward, this strategy appears to have had limited success:
even during training, the R2 of their angular velocity decode was
0.16 and 0.12 for the 2 monkeys. One alternative strategy would
be to apply our decode strategy bilaterally, and employ a compar-
ison (e.g., between left and right cycling speed) to control angular
velocity. This strategy should be viable even with a unilateral
implant; recent work has shown that information about both
forelimbs can be decoded equally well from either hemisphere
(Ames and Churchland, 2019; Heming et al., 2019). Another
strategy would be to control translational velocity using the strat-
egies developed here but use a reach-like decode for steering
(rather like pedaling a bicycle while also steering). Which (if any)
of these three strategies is preferable remains a question for
future experiments.
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