

Review

The interaction between neurotransmitter receptor activity and amyloid-β pathology in Alzheimer's disease

Journal of Alzheimer's Disease I-19 © The Author(s) 2025 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/13872877251342273 journals.sagepub.com/home/alz

Yuhan Nong¹, Jung Soo Kim¹, Litian Jia¹, Ottavio Arancio² and Qi Wang^{1,3} 10

Abstract

The accumulation of amyloid- β (A β) peptides is a hallmark of Alzheimer's disease (AD). Central to AD pathology is the production of A β peptides through the amyloidogenic processing of amyloid- β protein precursor (A β PP) by β -secretase (BACE-I) and γ -secretase. Recent studies have shifted focus from A β plaque deposits to the more toxic soluble A β oligomers. One significant way in which A β peptides impair neuronal information processing is by influencing neurotransmitter receptor function. These receptors, including adrenergic, acetylcholine, dopamine, 5-HT, glutamate, and gamma-aminobutyric acid (GABA) receptors, play a crucial role in regulating synaptic transmission, which underlies perceptual and cognitive functions. This review explores how A β interacts with these key neurotransmitter receptors and how these interactions contribute to neural dysfunction in AD. Moreover, we examine how agonists and antagonists of these receptors influence A β pathology, offering new perspectives on potential therapeutic strategies to curb AD progression effectively and improve patients' quality of life.

Keywords

acetylcholine, Alzheimer's disease, amyloid- $\!\beta\!,$ dopamine, GABA, glutamate, 5HT, neurotransmitter, norepinephrine

Received: 5 February 2025; accepted: 2 April 2025

Introduction

Alzheimer's disease (AD) is one of the leading causes of dementia in the world. The pathology of AD includes the aggregation of amyloid- β (A β) proteins, the formation of insoluble plaques, and the production of neurofibrillary tangles resulting from hyperphosphorylated Tau protein aggregation. Most amyloid-β protein precursor (AβPP) is processed through the non-amyloidogenic pathway, where α -secretase cleaves A β PP to produce soluble A β PP α (sAβPPα), followed by γ-secretase cleavage, preventing the formation of intact Aβ. In amyloidogenic pathway, sequential proteolytic cleavage of the A β PP by β -secretase (β -site AβPP-cleaving enzyme 1, BACE-1) and γ-secretase, generates Aß peptides ranging in length from 38 to 43 residues. $^{1-3}$ Among the various isoforms of A β , A β_{42} and $A\beta_{40}$ are the most commonly observed in human AD patients. $A\beta_{42}$ is more prone to aggregation, while $A\beta_{40}$ is less likely to form aggregates.⁴ Therefore, the $A\beta_{42}/A\beta_{40}$ ratio serves as a marker for early AD progression. Familial AD is often linked to specific mutations in genes encoding AβPP and the catalytic subunit of γ-secretase, known as presenilin. $^{5-7}$ These mutations tend to facilitate the amyloidogenic processing of A β PP, thereby increasing A β production. While amyloid plaque was traditionally regarded as neurotoxic, recent studies have underscored the toxicity of A β oligomers, 8,9 including their association with long-term potentiation (LTP) impairment, 10 synapse loss, 11 and cognitive dysfunction. 12

Within the complex context of brain function, neurotransmitter receptors serve as important mediators of neuronal

¹Department of Biomedical Engineering, Columbia University, New York, NY, USA

Corresponding author:

Qi Wang, Department of Biomedical Engineering, Columbia University, 500W 120th St, New York, NY 10027, USA. Email: qi.wang@columbia.edu

Handling Associate Editor: Subodh Kumar

²Departments of Pathology & Cell Biology, and Medicine, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA

³Department of Neurosurgery, Columbia University, New York, NY, USA

network dynamics underlying neural information processing. These receptors, including adrenergic receptors (ARs), acetylcholine receptors (AChRs), dopamine receptors (DRs), 5-HT receptors (5-HTRs), glutamate receptors gamma-aminobutyric (GluRs,) and acid (GABARs) are the key receptors in regulating synaptic transmission and further perceptual and cognitive processes. 13-17 Aβ has been shown to alter neuronal signaling by interacting with various neurotransmitter receptors (Figure 1). 18,19 Dysregulation or impairment of these receptors in the context of AD can influence neural circuit dynamics and thus exacerbate perceptual and cognitive dysfunction. Despite the continuous effort towards the treatment of AD, little therapeutic progress has been made over the past two decades. Exploring the interplay between AB pathology and the activity of these common neurotransmitter receptors would be critical in uncovering the mechanisms underlying AD pathogenesis and identifying new therapeutic strategies.

In this review, we focus on elucidating the role of neurotransmitter receptors in shaping the outcomes of AD treatment. By exploring the evidence and mechanisms through which the activity of neurotransmitter receptors interacts with A β pathology, we aim to provide insights that could potentially inform the development of therapeutic interventions for mitigating the impact of AD on brain functions and quality of life.

Interaction between adrenergic receptor activity and $A\beta$ pathology

Adrenergic receptors are a class of G protein-coupled receptors that are targets of norepinephrine. These receptors play essential roles in the regulation of a variety of brain functions. ^{20–22} They are broadly classified into $\alpha 1$, $\alpha 2$, and β subtypes. In the CNS, α2 and β2 adrenergic receptors are the most common. The α^2 receptors inhibit adenylyl cyclase activity through Gi proteins, while β receptors stimulate it via Gs proteins. Meanwhile, al receptors activate Phospholipase C (PLC) through Gq proteins.²³ Studies have demonstrated that AD is related to the change of locus coeruleus - norepinephrine (LC-NE) system. 24-26 For instance, AD mouse models exhibited age-related loss of LC neurons,²⁷ and this loss coincided with increasing β adrenergic receptor activity.²⁸ Another example is by increasing β adrenergic activity, researchers preserved Aβ-induced LTP impairment in AD mouse models.²⁹ Thus, it is important to elucidate different types of adrenergic receptors and their interplay with Aβ.

β 2 adrenergic receptors

The $\beta 2$ adrenergic receptor has been the most studied among all the adrenergic receptor subtypes. Soluble $A\beta$ can directly bind to the $\beta 2$ adrenergic receptor and trigger a cascade of downstream reactions, including activation of Protein Kinase A (PKA) signaling for GluR1

phosphorylation and enhancement of AMPAR-mediated excitatory postsynaptic current (EPSCs). 30,31 The majority of studies on enhancing β2 adrenergic receptor activity concluded that the activation of β2 adrenergic receptors plays a protective role against AB toxicity. Specifically, isoproterenol treatment and enriched environments, both of which stimulate β2 adrenergic receptors, have been shown to counteract Aβ-induced hippocampal impairments by cyclic AMP (cAMP)-PKA pathway.³² activating Moreover, activation of the β2 adrenergic receptor by clenbuterol not only reduced Aß plaque accumulation by modulating ABPP metabolism on molecular level, but also promoted hippocampal neurogenesis and memory function. 33,34 These protective effects extend to the epigenetic level, with procaterol, another \(\beta \) adrenergic receptor agonist, inhibiting Aß-induced synaptotoxicity through regulating histone acetylation.³⁵ From a translational perspective, human subjects receiving β2 adrenergic receptor agonists exhibited a reduced risk of developing AD, emphasizing the therapeutic potential of these compounds.³⁶ In contrast, some research suggested a potential adverse effect of β2 adrenergic receptor agonists. Clenbuterol and isoproterenol have been implicated in accelerating hippocampal and cerebral amyloid production, likely due to the enhanced γ -secretase activity. 37,38

The inhibition of $\beta 2$ adrenergic receptors, for example by its antagonist ICI118551, has also yielded contrasting findings. Studies have reported that ICI118551 can attenuate acute stress-induced A β production³⁷ and even reduce A β plaque formation with chronic treatment, 38 suggesting potential neuroprotective effects. In contrast, other investigations have revealed that the antagonist can elevate AB levels through increasing amyloidogenic ABPP processing^{30,39} and induce cognitive deficits in AD model mice by inhibiting dendritic ramification.³⁹ These discrepancies likely arise from a variety of factors, including differences in AD models used, the dosage and duration of pharmacological treatment, and the stage of disease progression. Addressing these variables through standardized protocols and comprehensive studies will be essential for uncovering the precise role and therapeutic potential of β2 adrenergic receptors in AD.

α 2 adrenergic receptors

Research focusing on the interface of A β and $\alpha 2$ adrenergic receptor has revealed surprising molecular interactions relevant to AD progression. Specifically, A β oligomers can bind to the $\alpha 2$ adrenergic receptor with nanomolar affinity, redirecting NE signaling, triggering the glycogen synthase kinase-3 β (GSK3 β) cascade and resulting in tau hyperphosphorylation. Moreover, A β PP also directly interacts with the $\alpha 2A$ adrenergic receptor subtype, decreasing receptor internalization and potentially modulating NE signaling. As pharmacological interventions, activation of the $\alpha 2A$

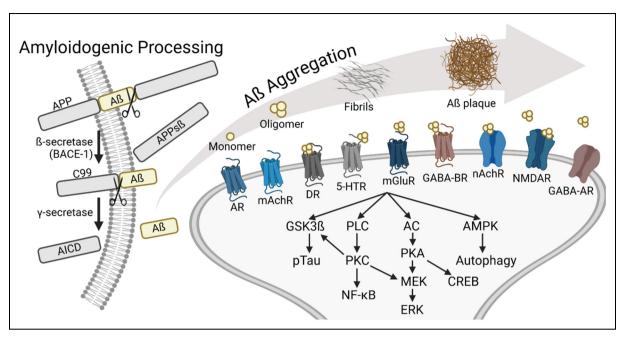


Figure 1. The production of amyloid- β (A β) peptides and their interaction with neurotransmitter receptor-mediated signaling pathways. Illustration was created in https://biorender.com.

adrenergic receptor subtype by clonidine has been shown to exacerbate $A\beta$ production by disrupting the interaction between $A\beta PP$ and Sorting-related receptor with A repeat (SorLA). ⁴² Conversely, inhibiting the $\alpha 2$ adrenergic receptor could reduce $A\beta$ generation and rescue $A\beta$ -induced cognition dysfunction. ^{42,43}

Beyond $\beta 2$ and $\alpha 2$ adrenergic receptors, researchers also explored the effect of other subtypes of adrenergic receptor on AD progression related to A β . For example, researchers found that treatment of CL316243, a $\beta 3$ adrenergic receptor agonist, effectively rescued A β -induced memory dysfunction and reduced A β_{42} /A β_{40} ratio. Higher Furthermore, by inhibiting $\alpha 1$ adrenergic receptor in AD model mice, BACE1 expression and GSK3 β phosphorylation were reduced, which in turn resulted in less A β production and better behavior performance. He for the subtype of the su

Interaction between cholinergic receptor activity and $A\beta$ pathology

AChRs are divided into two types: muscarinic (mAChRs), which are G-protein coupled receptors, and nicotinic (nAChRs), which are ionotropic receptors. Muscarinic receptors have five subtypes (M1-M5), 47 among which the M1 subtype is prominently expressed in the central nervous system and is significantly associated with AD. 48 nAChRs are found in various subtypes, each with unique properties and distinct distributions within the brain. 49 Research has demonstrated A β effects on both nAChRs and mAChRs. $^{50-52}$

α 7-nACh receptors

The α 7 nicotinic acetylcholine receptor is a homomeric receptor composed solely of five identical α7 subunits.⁵³ This receptor is known for its high calcium permeability, which distinguishes it from many other nAChR subtypes. It is widely distributed in the central nervous system and plays a role in cognitive function, learning, memory, and synaptic plasticity. Research has shown Aß oligomers could bind to the orthosteric binding site of α7-nAChR with high affinity, 54,55 and this binding induces concentration-dependent conformational changes α7nAChR.⁵⁶ Consistent with results from several studies that have shown the effects of AB on neuronal activity and synaptic function, AB itself directly influenced α7-nAChR's function by acting as a negative modulator to reduce their activation duration, 56 indicating that AB can functionally act as an α7nAChR antagonist. 57,58 While Aß exposure has been shown to lead to unpredictable alterations in membrane potential and decrease in excitatory postsynaptic potentials (EPSPs) through L-type calcium channels,⁵⁹ it also resulted in post-translational and functional upregulation of α7-nAChRs^{60,61} and suppression of nAChR agonist-induced excitation. 62,63 Interestingly, early Aβ-induced neuron hyperactivity, mediated by α7-nAChR, usually followed by synaptic inhibition.⁶⁴ These results highlighted a complex effect of AB on α7-nAChR. Moreover, the interaction of Aβ with α7-nAChRs can alter the dynamic properties of neuronal networks in amyloid overproducing mice.⁶⁵ The role of familial AD-associated Arctic Aβ has also been

Receptor	Agonist/ Antagonist	Treatment	Biological Model	Main Result	Reference
β2 AR	Agonist	Isoproterenol	WT mice brain slices with oAβ	Reduced Aβ-induced hippocampal impairment	32
β 2 AR	Agonist	Clenbuterol	APP/PS1 mice	Increased α -secretase, reduced A β plaques, and promoted hippocampal neurogenesis, dendritic branching and memory	33,34
β2 AR	Agonist	Procaterol	WT mice brain slices with oAβ	Enhanced LTP, and prevented Aβ-induced synaptic dysfunction	35
β2 AR	Agonist	_	Human subjects	Reduced the risk of developing AD	36
β 2 AR	Agonist	Isoproterenol and clenbuterol	APP/PSI mice	Enhanced γ-secretase activity, and increased cerebral amyloid plague	38
β2 AR	Antagonist	ICI118551	APP/PS1 mice	Decreased cerebral amyloid plague	38
β 2 AR	Antagonist	ICI118551	3xTg-AD mice	Increased amyloidogenic AβPP processing, and exacerbated cognitive impairment	30
β 2 AR	Antagonist	ICI118551	AD-TG mice	Inhibited dendritic ramification, downregulated α -secretase activity, and exacerbated cognitive deficit	39
α2 AR	Agonist	Clonidine	APP/PSI mice	Exacerbated A β production by promoting A β PP dislocation and cleavage	42
α 2 AR	Antagonist	Idazoxan	APP/PS1 mice	Reduced $A\beta_{42}$, and mitigated memory impairment	42

Table 1. The effect of adrenergic receptor manipulation in AD.

investigated, revealing its ability to bind to the nAChR α7 subunit and inhibit the calcium ion response and ERK1/2 activation.66

Interestingly, both activation and inhibition of α7-nAChR vielded beneficial outcomes regarding Aβ toxicity. Agonists of α7-nAChR, such as epibatidine, SSR180711, and A-582941, have been shown to protect receptor loss from $A\beta_{42}$ toxicity,⁵⁴ reverse $A\beta$ -induced synaptic transmission deficit,⁶⁷ and enhance cognitive functions or induce neuroprotective effects in WT mice or mouse models of AD. 68,69 These effects may result from the ability of α7-nAChR agonists to disrupt the interaction between Aβ and nAChR. ⁷⁰ Conversely, α7-nAChR antagonists, like methyllycaconitine, have also demonstrated inhibitory effects on certain Aβ-induced toxicities, highlighting the complex role of α 7-nAChR in AD pathology. For example, methyllycaconitine can prevent and inverse Aβ binding to α7nAChR and prevent Aβ induced neuronal hyperexcitation. ^{55,61} Also, α7-nAChR antagonist cotreated in cell culture with $A\beta_{42}$ could diminish $A\beta_{42}$ associated dysfunction.⁷¹ mitochondrial Additionally, approaches, such as the knockout of the α7-nAChR gene, have been shown to trigger age-dependent AD-like pathology.⁷² However, some research suggested that this deletion may result in rescuing cognitive deficits and synaptic pathology in certain AD models. 61,73

α 7 β 2 nACh receptors

The α7β2 nAChR subtype represents a more recently identified and less understood configuration, comprising both α7

and β2 subunits.⁷⁴ This heteromeric assembly diversifies the functional and pharmacological properties of the receptors to other nAChRs. 75 For example, their choline-induced current showed smaller amplitude and a longer duration compared to homomeric α7-nAChR.75 Researchers also found that α 7 β 2-nAChR exhibits greater sensitivity to A β 42 oligomers compared to α7-nAChR, as its function can be blocked by lower nanomolar concentrations of A β_{42} oligomers. ^{76,77} This heightened sensitivity may indicate a unique role for $\alpha 7\beta 2$ nAChR in AD pathogenesis. Activation of α7β2-nAChR receptors by $A\beta_{42}$ oligomers also triggered hyperexcitation and degeneration of basal forebrain cholinergic neurons.⁷⁸ At molecular level, Aβ₄₂ oligomers also preferentially extend the open-dwell times of α7β2-nAChR, likely contributing to cognitive decline in AD. 78 In addition, APP/PS1 transgenic mice lacking α7β2-nAChR displayed improved spatial reference memory compared to normal APP/PS1 transgenic mice, further emphasizing the significance of this receptor subtype in AD pathology.⁷⁸

$\alpha 4\beta 2$ nACh receptors

The $\alpha 4\beta 2$ subtype is one of the most abundant nicotinic receptors in the brain. Compared to the α7-nAChR, it has slower activation and desensitization kinetics and lower calcium permeability.^{79,80} The α4β2-nAChR also plays a critical role in modulating synaptic plasticity and cognitive processes. Essential insights about α4β2-nAChR in AD come from studies that showed AB reducing the expression of α4β2-nAChR in cell culture.⁸¹ Epibatidine is a potent agonist of α4β2-nAChR and a less potent agonist of

Table 2	The effect of	f chalineraic	receptor	manipulation in	ΔD
Table 4.	THE EHECL O	i chomieraic	receptor	manibulation in	AD.

Receptor	Agonist/ Antagonist	Treatment	Biologcal Model	Main Result	Reference
α7 nAChR	Agonist	Nicotine, epibatidine	SK-N-MC cell culture with $A\beta_{42}$	Protected α 7nAChR loss from A β_{42}	54
α7 nAChR	Agonist	A-582941	3xTg-AD mice	Increased c-Fos & BDNF expression, and improved cognition	69
α7 nAChR	Antagonist	methyllycaconitine	HEK293T & SH-SY5Y cell culture with $A\beta_{42}$	Prevented A β binding to α 7nAChR, and prevented LDH release	55,61
α7 nAChR	Antagonist	lpha-Bungarotoxin	SH-SY5Y cell culture with Aβ ₄₂	Diminished A β_{42} -associated mitochondrial dysfunction	71
MI mAChR	Agonist	AF267B	3xTg-AD mice	Reduced amyloid and Tau production, and improved memory performance	86
MI mAChR	Antagonist	dicyclomine	3xTg-AD mice	Shifted AβPP processing to amyloidogenic pathway (Higher BACEI activity)	86
mAChR	Agonist	Oxo-M	Rat frontal cortical brain slices with $A\beta_{25-35}$	Eliminated Aβ effects on PKC & CaMKII	87
mAChR	Antagonist	Atropine; pirenzepine	Wistar rat medial septal brain slices with $A\beta_{40}$, $A\beta_{25-35}$	Blocked A β toxicity on glutamatergic synaptic transmission	51

 $\alpha 7\text{-nAChR}.^{82}$ Aβ's ability to suppress epibatidine-induced currents in rat hippocampal CA1 pyramidal neurons demonstrated its negative impact on the $\alpha 4\beta 2\text{-}$ and $\alpha 7\text{-nAChR}$ subtype. 63 Additional findings revealed that inhibition of Aβ40 on AChR-evoked dopamine release is partly mediated by the extracellular interaction between $\alpha 4\beta 2\text{-nAChR}$ and Aβ40 molecule. 83 The ability of Aβ on selectively targeting $\alpha 7\text{-}$ and $\alpha 4\beta 2\text{-nAChR}$ s attributed to its interaction with arginine 208 and glutamate 211 on the $\alpha 7$ & $\alpha 4$ subunits. 84 Moreover, coactivation of $\alpha 7\text{-}$ and $\alpha 4\beta 2\text{-nAChR}$ s reversed AMPAR dysfunction and LTP disruption induced by Aβ. 84

Muscarinic ACh receptors

mAChRs are a class of G protein-coupled receptors that respond to the neurotransmitter acetylcholine. Unlike nAChRs, which are ion channels, mAChRs influence cells through a variety of signal transduction pathways.⁸⁵ There are five known subtypes of mAChRs, designated M1 through M5, each with distinct functions and pharmacological profiles. A study showed that M1 receptors significantly modulate AD-like pathology in 3xTg-AD transgenic mice, with M1 mAChR agonist AF267B leading to an improvement in memory performance and a reduction in amyloid and tau pathology.86 This study also found that dicyclomine, an M1 antagonist, yielded opposite results, thereby emphasizing the potential therapeutic importance of M1 mAChR. 86 The interaction of Aβ and mAChR extends to synaptic function as well. It has been demonstrated that Aβ-induced EPSC reduction could be mitigated by atropine, a mAChR antagonist, and calcicludine, a calcium channel antagonist.⁵¹ This finding also

indicated that the mAChR plays a more fundamental role than the nAChR in this context since nAChR antagonist has no such effect. Complementing this observation, another study showed that the enhanced activation of intracellular signaling enzymes Protein Kinase C (PKC) and CaMKII by Aβ could be inhibited by oxo-M, an mAChR agonist. However, nAChR agonist had no such effect. Further complicating the Aβ-mAChR interaction, a study suggested that Aβ oligomers interfere with the functionality of the M1 mAChR by altering its interaction with G-proteins or modulate M5 mAChR signal transduction intracellularly. Together, it is clear that the mechanisms through which Aβ and mAChR interact in AD are complicated, and future research is needed to further elucidate these complex interactions. (Table 2).

Interaction between dopaminergic receptor activity and Aβ pathology

In addition to adrenergic receptors, dopaminergic receptors represent another major type of catecholamine receptors. Dopamine receptors are a class of GPCRs and consist of five main subtypes, labeled D1 through D5, which are divided into two main classes based on their pharmacological properties and effects: the D1-like receptors (D1 and D5) and the D2-like receptors (D2, D3, and D4).⁸⁹ In the CNS, the most prominent subtypes are D1 and D2 receptors. D1 receptors, primarily excitatory, are coupled to Gs proteins, which increase the cAMP and thus promoting cellular signaling pathways that modulate motor control, cognition, and reward systems. In contrast, D2 receptors are inhibitory and coupled to Gi proteins, which reduce cAMP and modulate neuronal

Receptor	Agonist/ Antagonist	Treatment	Biological Model	Main Result	Reference
DIR	Agonist	SKF38393	Icv Aβ ₄₂ -injected ICR mice	Enhanced BDNF and Bcl-2 expression, reduced BACE1 activity and mitigated cognitive deficits	96
DIR	Agonist	A-68930	Icv $A\beta_{42}$ -injected ICR mice	Alleviated neuroinflammation, and mitigated cognitive deficits	95
DIR	Antagonist	SCH23390	Icv $A\beta_{42}$ -injected ICR mice	Exacerbated cognitive deficits	96
D2R	Agonist	Bromocriptine	Icv A β_{42} -injected ICR mice	Improved cognitive performance	97
D2/D3R	Agonist	Rotigotine	AD patients	Increased cortical excitability and restored central cholinergic transmission	98

Table 3. The effect of dopaminergic receptor manipulation in AD.

excitability. Because D2 receptors are critically involved in regulating motor functions, mood, and motivation, they serve as essential pharmacological targets in the treatment of disorders like Parkinson's disease and schizophrenia. In comparison to Parkinson's disease and schizophrenia, research on dopamine receptor involvement in AD is relatively limited. However, altered dopamine receptor levels have been observed in AD patients. PET imaging studies have demonstrated reduced D2 receptor binding availability in AD brains. Immunohistochemical analyses revealed significantly decreased expression of cortical D1, D3, and D4 receptors, while D5 receptor expression was elevated.

Dopaminergic D1 receptors

Recent studies have begun to explore the effects of dopamine receptor modulation on amyloid pathology. For instance, D1 receptor agonists such as SKF38393 and A-68930 have shown promise in mitigating cognitive deficits induced by intracerebroventricular (icv)-injected AB. 95,96 The underlying mechanisms remain under investigation, with researchers identifying different pathways of action. SKF38393 has been found to increase cAMP response element binding protein (CREB) phosphorylation, subsequently enhancing brain-derived neurotrophic factor (BDNF) and B-cell Lymphoma 2 (Bcl-2) expression and reducing BACE1 activity. 96 Meanwhile, A-68930 appeared to alleviate Aβ-induced neuroinflammation via an AMPK/autophagy pathway, promoting NLR family pyrin domain containing 3 (NLRP3) inflammasome degradation and reducing IL-1β and IL-18 levels. 95 Conversely, the D1 receptor antagonist SCH23390 demonstrated opposite effects to SKF38393, further underscoring the therapeutic potential of D1 receptor agonists. 96

Dopaminergic D2 receptors

In studying the effect of dopaminergic D2 receptor activity in AD, bromocriptine, a D2 receptor agonist, demonstrated protective effects against cognitive impairment induced by icv-injected Aβ. ⁹⁷ Mechanistic studies in both in vivo and in

vitro models revealed that bromocriptine, through dopaminergic D2 receptor activation, recruited protein phosphatase 2A (PP2A) and c-Jun N-terminal kinase (JNK) via β -arrestin 2. This action inhibited JNK-mediated transcription of proinflammatory cytokines and prevented NLRP3 inflammasome activation in microglia. Rotigotine, another D2/D3 receptor agonist, has been shown to increase cortical excitability and restore central cholinergic transmission in AD patients. ⁹⁸ (Table 3).

Interaction between 5-HT receptor activity and $A\beta$ pathology

The 5-HT (serotonin) receptors are a diverse group of receptors that mediate the effects of serotonin across both the central and peripheral nervous systems. They are classified into seven families, from 5-HT1 to 5-HT7, with most subtypes being GPCRs that modulate intracellular signaling pathways. 99 An exception is the 5-HT3 receptor, which is a ligand-gated ion channel responsible for fast excitatory neurotransmission. The 5-HT1 family, including subtypes like 5-HT1A and 5-HT1B, is primarily inhibitory, reducing cAMP levels and decreasing neuronal excitability. On the other hand, families such as 5-HT2, 5-HT4, and 5-HT6 are excitatory, with 5-HT2 increasing intracellular calcium through Gq signaling and 5-HT4 and 5-HT6 stimulating cAMP production via Gs signaling. 100 Each subtype shows a distinct pattern of expression across brain regions and contributes to a wide range of functions, including mood regulation, cognition, appetite, and circadian rhythms. For instance, 5-HT1AR is highly expressed in the midbrain, limbic system (especially the hippocampus), and cortex, while 5-HT2AR is predominantly located in the cortex, particularly in high-level associative. 101 Research has shown that AB affects the serotonergic system, disrupting normal 5-HT receptor signaling. 102 The interaction between Aβ and 5-HT1A, 5-HT2A, 5-HT2B, 5-HT4, and 5-HT6 receptors has been the most extensively studied, revealing important insights into their roles in neurodegenerative processes.

5-HTIA receptors

The 5-HT1A receptor, part of the 5-HT1 receptor family, is highly expressed in brain regions such as the hippocampus and amygdala, which are crucial for emotional processing and cognitive functions. It is primarily an inhibitory GPCR that reduces cAMP production by inhibiting adenylate cyclase, therefore decreasing neuronal excitability. PET imaging studies have shown altered 5-HT1A receptor expression during different stages of AD, with some studies reporting a reduction in 5-HT1A density, 103,104 while others have observed an upregulation. 105,106 The interaction between A_B and 5-HT1A receptors presented complex effects on neuronal function and cognitive outcomes in AD models. $A\beta_{40}$ and $A\beta_{42}$ differentially influenced 5-HT1AR expression: $A\beta_{40}$ induced receptor overexpression, possibly as a protective mechanism, whereas $A\beta_{42}$ caused neuronal lesions without affecting receptor levels. 107 In models of memory loss induced by streptozotocin (STZ), which mimic memory impairments in AD, the 5-HT1AR antagonist NAD-299 mitigated memory deficits, reduced oxidative stress, and decreased neuronal loss. 108,109 Additionally, the 5-HT1AR antagonist WAY100635 reduced neuroinflammation and improved cognitive performance in Aβ₄₂-injected mice, possibly through the NF-κB pathway. 110

5-HT2 receptors

Research has shown both AD mouse model and human patients exhibit a loss of 5-HT2A receptors in various brain regions, including the hippocampus, medial prefrontal cortex (mPFC) and cerebral cortex. 111-115 Studies using PET imaging in AD patients have revealed a reduction in cortical 5-HT2AR binding, independent of serotonergic neuron loss. This finding suggested that 5-HT2AR loss may be an early feature of AD. ¹¹¹ Injecting A β_{42} into the hippocampus led to reductions in BDNF, memory deficits, and a loss of hippocampal 5-HT2AR. 114,115 Both 5-HT2AR agonists and antagonists showed therapeutic potential in AD treatments. In a STZ-induced rat model of memory loss, the 5-HT2AR agonist TCB-2 has been shown to alleviate memory deficits, reduce oxidative stress, and mitigate neuronal loss, suggesting a neuroprotective effect. 108,109 Moreover, Desloratadine (DLT), a selective 5-HT2AR antagonist, reduced A_β plaque deposition in AD model mice by facilitating microglial phagocytosis of A_B. 116 Unlike the 5-HT2AR, pioneering research indicated that patients with sporadic AD exhibit elevated expression of the 5-HT2BR in the cortex. 117 Additionally, there was an increase in 5-HT2BR mRNA expression associated with A β accumulation. The selective 5-HT2BR antagonist, MW701, has demonstrated promising results in mitigating $A\beta_{42}$ -induced impairments in LTP and memory deficits. 117

5-HT4 receptors

The 5-HT4 receptor is another excitatory serotonin receptor. It activates the cAMP-PKA pathway, increasing neurexcitability. Predominantly expressed in the hippocampus, 5-HT4 receptors are widely recognized for their involvement in learning and memory. Treatment with the 5-HT4R agonist RS-67333, both short-term (two weeks) and long-term (four months), improved memory in AD model mice while reducing AB load and neuroinflammation. 119-121 Moreover, treatment with both RS-67333 and Usmarapride (a 5-HT4R partial agonist) increased soluble A β PP α , indicating the possible involvement of α -secretase activation. Research has further suggested that 5-HT4R agonists modulate A\u03b3PP processing to favor the non-amyloidogenic pathway. 123–125 Activation of α-secretase may occur through the ERK signaling pathway via cAMP and PKA signaling, which activates MEK and ERK, enhancing α-secretase ADAM10 activity and reducing Aβ levels. 123,125 Evidence also suggested that 5-HT4R may activate α-secretase through a G-protein and Src-dependent activation of PLC, bypassing cAMP and PKA signaling. 124 These findings highlighted the complexity of GPCR signaling in AβPP processing and Aβ metabolism.

5-HT6 receptors

The 5-HT6 receptor, primarily expressed in the hippocampus, is important in mediating learning and memory. Treatment with 5-HT6R antagonists, such as AVN-211 and SB-25858, has shown positive effects in attenuating A β -induced memory loss, ^{120,126–128} likely by regulating the morphology and function of neuronal primary cilia. ¹²⁹ There is also evidence that 5-HT6R agonists can decrease amyloid pathology and prevent memory loss. ^{123,130} One potential mechanism is that 5-HT6R activation would increase α -secretase activation through the PKA-ERK pathway. However, further research is needed to further clarify the mechanisms by which 5-HT6R modulates amyloid pathology.

Research on the interaction between A β and other types of 5-HT receptors is limited, but there is potential for discovering novel therapeutic targets for AD. For instance, the 5-HT7R agonist AS19 has shown promising effects in reducing A β plaque deposition, preventing neuronal apoptosis, and improving memory performance in rat AD models. ^{131,132} (Table 4).

Interaction between glutamate receptors and $A\beta$ pathology

Glutamate is the primary excitatory neurotransmitter in the central nervous system. Given the importance of the

Table 4. The effect of 5-HT receptor manipulation in AD.

Receptor	Agonist/ Antagonist	Treatment	Biological Model	Main Result	Reference
5-HTIAR	Antagonist	NAD-299	STZ-induced Wistar rats	Reduced oxidative stress, decreased neuronal loss, and mitigated memory deficits	108,109
5-HTIAR	Antagonist	WAY100635	$A\beta_{42}\text{-injected}$ WT mice	Alleviated Aβ-induced learning and memory decline	110
5-HT2AR	Agonist	TCB-2	STZ-induced Wistar rats	Reduced oxidative stress, decreased neuronal loss, and mitigated memory deficits	108,109
5-HT2AR	Antagonist	Desloratadine	APP/PS1 mice	Reduced Amyloid plaque deposition by enhancing microglial Aβ phagocytosis	116
5-HT2BR	Antagonist	MW701	$A\beta_{42}\text{-injected}$ WT mice	Mitigated $A\beta_{42}$ -induced impairments in LTP and memory deficits	117
5-HT4AR	Agonist	RS-67333	5xFAD mice	Reduced Aβ load and neuroinflammation, improved memory performance,	119,121
5-HT6AR	Antagonist	SB-258585	STZ-induced Wistar rats, Aβ ₄₂ -injected Wistar rats	Attenuated LTP impairment and memory loss	126,128
5-HT6AR	Agonist	WAY-181187	MK-801-induced Wistar	Enhanced BDNF expression and prevented memory impairments	130
5-HT7R	Agonist	ASI9	Aβ-injected Wistar rats, STZ-induced Wistar rats	Reduced Aβ plaque deposition and neuronal apoptosis, improved memory performance	131,132

glutamate system in memory formation, the interaction between AB and glutamate receptors has been heavily studied. Glutamate receptors are broadly categorized into ionotropic and metabotropic types. The ionotropic receptors include NMDA (N-methyl-D-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors, which are directly involved in fast synaptic transmission. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors that modulate neuronal and synaptic function through secondary messenger systems. It can be further divided into 3 groups. Group I mGluRs, including mGluR1 and mGluR5, activate phosphoinositide hydrolysis, leading to increased intracellular calcium levels and activation of PKC. Group II mGluRs, such as mGluR2 and mGluR3, and Group III mGluRs, which include mGluR4, mGluR6, and mGluR7, inhibit adenylate cyclase activity, resulting in a reduction of cAMP levels. 133 These distinct signaling mechanisms allow mGluRs to play diverse roles in modulating neuronal excitability and synaptic plasticity.

NMDA receptors

NMDARs are distinguished by their voltage-dependent activation, requiring both glutamate binding and membrane depolarization to relieve Mg^{2+} block of the ion channel. This makes them highly sensitive to the synaptic activity and capable of detecting coincident pre- and postsynaptic activity, fundamental for the synaptic plasticity processes like LTP. The relationship between $A\beta$ and NMDAR is

most studied among all glutamate receptors. Aß was shown to decrease the surface expression of NMDAR. 134,135 More specifically, AB oligomers colocalized with GluN1 and GluN2B, further leading to the loss of GluN2B subunit. 136,137 and a shift in NMDAR composition from GluN2B to GluN2A. 138 NMDAR played an important role in Aβ-induced spine loss and LTP impairment. 139-142 One possible reason for Aß oligomers-induced spine loss could be their role in reducing calcium influx into active spine through NMDAR, 143 or it could be the hyperactivation of caspase-3. 144 All the subunits, GluN1, GluN2A and GluN2B, were required for Aβ-induced spine loss. 135 As for LTP impairment, Aβ has been shown to inhibit LTP by enhancing extrasynaptic NMDAR-mediated function, but not via synaptic NMDAR. 140,141 Among all NMDAR subunits, GluN2B is particularly significant in Aβ-related pathology. Aß oligomers mainly targeted hippocampal extrasynaptic NMDAR containing GluN2B141 and resulted in loss of GluN2B response. 138 In addition, the dephosphorvlation of GluN2B at Tyr1472 was found to correlate with Aβ-mediated NMDAR endocytosis. 145

Some research indicated NMDAR activation can increase the activity of α -secretase and thus inhibit amyloid pathogenesis. However, a different viewpoint claims that after separating the functions of extrasynaptic and synaptic NMDAR, extrasynaptic NMDAR activation can shift A β PP isoform from A β PP695 to Kunitz protease inhibitory domain (KPI) containing A β PP (KPI-A β PP). KPI-A β PP has a higher amyloidogenic potential, meaning KPI-A β PP could inhibit α -secretase pathway and enhance

β-secretase processing. 148 In parallel, the calcium pathway played an important role in Aβ-NMDAR interaction. Studies suggested that Aβ oligomers directly reduce NMDAR-mediated calcium influx, particularly in highly active synapses. 134,143,149 Furthermore, the dose of Aβ needed to block calcium entry for NMDAR is much lower compared to the dose needed to induce NMDAR endocytosis. 149 This result indicated a new early-stage impairment of Aβ on NMDAR metabolism. However, other evidence suggested that instead of inhibiting calcium entry, Aβ oligomers may enhance calcium influx through the activation of NMDAR, ultimately leading to mitochondrial dysfunction and neuronal loss. 150

Inhibition of NMDAR for AD treatment has already been successful on the bedside. Memantine, a non-competitive NMDAR antagonist, has been approved by FDA for AD treatment. 151,152 One potential mechanism of action of memantine therapy might be its ability to block extrasynaptic NMDAR-mediated currents without affecting the normal synaptic NMDAR-mediated currents. 153 Studies also found memantine inhibited NMDAR-mediated KPI-ABPP production, hence inhibiting $A\beta$ generation, in a dose-dependent manner. 147 Chronic treatment of memantine not only reduced Aβ oligomers and prevented Aβ-induced LTP impairment, ¹⁵⁴ but also reduced neuronal loss and prevented memory dysfunction. 155,156 Beside memantine, AP5, another broad NMDAR antagonist, also showed similar effects on preventing Aβ-induced LTP impairment¹⁵⁷ and calcium imbalance. 158 On contrary, the 3-(2-carboxypiperazin-4yl) propyl-1-phosphonic (CPP), also a NMDAR antagonist, increased Aβ load in the brain and triggered spine loss. 143,159 People has now been focusing on the manipulation of GluN2B subunit. Ifenprodil and Ro 25-6981, both GluN2B antagonist, showed to prevent Aß oligomer-induced deficit in LTP and NMDAR impairment. 149,160,161 These findings indicated the significance of GluN2B in Aß pathological impact.

AMPA receptors

AMPA receptors are the main mediators of fast excitatory synaptic transmission inside the brain. Their rapid activation by glutamate allows for quick changes in membrane potential via the influx of sodium. Research has shown A β decrease the density of AMPAR in the cortex. ¹⁶² One possibility is that A β induced AMPAR ubiquitination via increasing AMPAR E3 ligase Nedd4 and decreasing AMPAR deubiquitinase USP46 expression. ¹⁶³ This process depended on the presence of GluR1 subunit, whose synaptic expression was decreased with the presence of early A β pathology, ^{164,165} but the detail mechanism has been controversial. Some argued that it is due to GluR1 phosphorylation, since GluR1 ubiquitination-deficient could increase GluR1 phosphorylation, and further prevent A β -induced AMPAR endocytosis. ¹⁶⁶ However,

some believed Aβ-induced caspase-3 activity enhancement would cause dephosphorylation of GluR1 via calcineurin and thus resulted in AMPAR degradation. 167 The AB effect on GluR1 subunit may be an explanation of why GluR1 knockdown, but not GluR2 knockdown, could prevent AB toxicity on AMPAR-mediated EPSC enhancement. 168 Beyond GluR1 subunit, AB has also shown effect on GluR2 and GluR3 subunits. Human AD samples had fewer GluR2/3 subunits on neuronal membrane. 169 What's more, the phosphorylation of GluR2¹⁷⁰ and GluR3 by A\beta is essential for its role in causing synaptic impairment and memory dysfunction. 171 CaMKII may also play an important role in Aβ-AMPAR interaction, since CaMKII expression enhancement could rescue Aß-induced AMPAR deficit on its ionic current and response. 165 Similar to NMDAR, research has shown Aβ oligomer could induce overactivation of AMPAR, leading to a substantial calcium influx and subsequent neuronal oxidative stress. 150 Furthermore, intracellular AB oligomers have been shown to induce neuronal hyperexcitability through AMPAR-mediated current. ¹⁷² In addition to Aβ changing AMPAR downstream pathway, AMPAR also mediates Aß metabolism. Research has shown steady-state AMPAR activity could increase ISF Aβ level. ¹⁷³ However, evoked AMPAR activity could reduce AB level in a dosedependent manner via a pathway including NMDAR and IL-6.¹⁷³ Although treatments based on the manipulation of AMPAR are relatively limited, previous work has shown that hippocampal neurons lacking the GluR3 subunit were protected from A\(\beta\)-induced synaptic depression, spine loss, and impairment of LTP. 171 The behavioral outcome matched this finding, as GluR3-deficient APP mice maintained normal memory despite Aβ overproduction.¹⁷¹ The inhibition of AMPAR desensitization, which is the ability of AMPARs change their conformation under prolonged exposure to glutamate to prevent neuronal overexcitation, by cyclothiazide rescued synaptic plasticity in AD model mice. 162 The research on behavior level is lacking regarding AMPAR regulation.

mGluR5 receptors

mGluR5 is a subtype of metabotropic glutamate receptors that plays a crucial role in modulating neuronal excitability and synaptic plasticity across various brain regions. 174 Cellular prion protein (PrPC) plays a center role in the interaction between A β and mGluR5. Experiments have shown A β can interact with mGluR5 through a connection mediated by the PrPC. 175,176 The A β -PrPC-mGluR5 complex not only activated Fyn kinase which led to dendritic spine loss, 175 but also mediated synaptic plasticity alterations. Its effect on synaptic plasticity particularly suppressed LTP and facilitated LTD. 139,176 By preventing A β binding to PrPC, the A β -induced LTD facilitation could be blocked. 176 On the

Receptor	Agonist/ Antagonist	Treatment	Biological Model	Main Result	Reference
NMDAR	Agonist	NMDA	Cortical neuron culture of WT mice	Increased α-secretase activity and inhibited amyloid generation	146
NMDAR	Agonist	NMDA	Cortical neuron culture of WT mice	Increased Aβ production via extrasynaptic NMDAR activation to shift AβPP isoform to KPI-AβPP	147
NMDAR	Antagonist	Memantine	AD patients	Inhibited Aβ generation and prevented memory dysfunction	151,152
NMDAR	Antagonist	AP5	Hippocampal WT brain slices with Aβ40, cortical neuron culture of WT mice	Prevented the Aβo-mediated impairment of LTP and calcium imbalance	157,158
NMDAR	Antagonist	CPP	APP/PS1 mice, SD rat brain slices with $oA\beta$	Increased ICF $A\beta$ level, and prevented spine loss	143,159
NMDAR GluN2B	Antagonist	lfenprodil, Ro 25-6981	Hippocampal neuron culture and slices of WT rats and mice	Prevented $A\beta$ -induced LTP inhibition	149,160,161
mGluR5	Agonist	CDPPB	T41 mice	Prevented Aβ-induced neuronal loss, and reduced gliosis	182
mGluR5	Antagonist	MPEP	Hippocampal brain slices of WT mice and rat with oAβ	Prevented $A\beta$ -induced LTP impairment	161,180
mGluR5	Antagonist	MTEP	APP/PS1 mice	Rescued spine loss and memory dysfunction	175
mGluR5	Antagonist	CTEP	APP/PS1 mice	Reduced Aβ level and rescued cognition dysfunction	181

Table 5. The effect of glutamatergic receptor manipulation in AD.

other hand, research has shown mGluR5 binds to PrPC via intracellular protein mediators, including Homer1b/c, CaMPKII and tyrosine kinase 2β . A β oligomers have been reported to increase the phosphorylation level of these intracellular protein mediators and thus induce deficit of synaptic plasticity. ¹⁷⁷ Furthermore, A β showed high binding affinity to mGluR5 via PrPC only in male mice and human brain samples, but not in female samples. ¹⁷⁸ This sex-specific characteristics of A β -PrPC-mGluR5 complex may be an explanation of sex difference in AD. In addition to its interaction with PrPC, A β oligomer itself can also change the configuration of mGluR5 by promoting their clustering, which will lead to higher intracellular calcium concentration and further synaptic impairments. ¹⁷⁹

The manipulation of mGluR5 has shown promising results in AD treatment. 2-Methyl-6-(phenylethynyl)pyridine (MPEP), a commonly used mGLuR5 antagonist, has shown to prevent Aβ oligomer-induced impairment in LTP induction 161,180; while MTEP, another mGluR5 antagonist, rescued spine loss and memory dysfunction in AD model mice. 175 In addition, chronic treatment of 2-Chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP), a long-lasting metabotropic mGluR5 inhibitor, reduced Aβ level and rescued cognition dysfunction of AD model mice. 181 However, this effect may be sex-specific, as a recent study suggested that the effect of CTEP only works on male mice. 178 Enhancing mGluR5 activity by CDPPB, a mGluR5 positive allosteric modulator, can prevent

Aβ-induced neuronal loss, but unfortunately had little effect on rescuing memory deficit on 14-month-old AD model mice. ¹⁸² (Table 5).

Interaction between GABA receptors and Aß pathology

Gamma-aminobutyric acid (GABA) receptors are the primary inhibitory neurotransmitter receptors in central nervous system. There are two main types of GABA receptors: GABA-A receptors and GABA-B receptors. Each type plays a critical role in neural inhibition but operates through different mechanisms. GABA-A receptors are ionotropic receptors and ligand-gated ion channels. Their response is fast, allowing chlorine ions flowing into their central pore composed of 5 subunits from seven subunit subfamilies (i.e., α , β , ...). This fast inhibitory neurotransmission makes them crucial for maintaining the balance between neuronal excitation and inhibition, influencing everything from encoding sensory signals to cognitive processing. GABA-B receptors, on the other hand, are G-protein coupled receptors consisting of B1 and B2 two subunits. Their response is slower, but more prolonged compared to GABA-A receptors. 184

GABA-A receptors

In the context of AD, $A\beta$ is found to modify the subunit composition of GABA-A receptors. This modification

Table 6. The effect of GABAergic receptor manipulation in AD.

Receptor	Agonist/ Antagonist	Treatment	Biological Model	Main Result	Reference
GABA-AR	Agonist	Muscimol	SD rat cortical and hippocampal neuron culture	Inhibited ROS generation and Aβ-induced neuronal apoptosis	190,191
GABA-AR	Agonist	α5ΙΑ	Hippocampal primary cell culture of WT mice	Reduced A β -induced cell death	192
GABA-AR	Agonist	Gaboxadol	5XFAD mice	Reversed hippocampal hyperexcitation and mildly restored cognitive function	186
GABA-AR	Antagonist	Bicuculline, picrotoxin	APP/PS1 mice	Increased LTP level, and rescued memory deficit	194
GABA-AR	Antagonist	Picrotoxin	WT mouse hippocampal brain slices with oAβ	Reduced soluble A β o induced LTP deficit	157
GABA-AR	Antagonist	Picrotoxin	hAPP transgenic mice	Normalized the development of adult-born granule cells in hAPP mice	195
GABA-BR	Antagonist	CGP36216	hAPP transgenic mice	Rescued neuronal hyperexcitation	201
GABA-BR	Antagonist	CGP35348	Icv Aβ-injected Wistar rats	Alleviated memory impairment	202

included down-regulation of the $\alpha 1$ and $\gamma 2$ subunits, along with an upregulation of $\alpha 2$, $\beta 1$, and $\gamma 1$ subunits in the AD brain of mouse model and human patients. 185,186 This change in composition correlated with an increased EC50 of the GABA-A receptor for GABA in the AD brain, 185 implicating a reduced receptor sensitivity. APP-PSEN1 mice exhibited neuronal hyperexcitability in the locus coeruleus, which may result from impaired function and reduced expression of the GABA-A receptor α3 subunit. These changes may be attributed to AB toxicity, as the GABA-A receptor α3 subunit has been shown to overlap with AB oligomer expression in both APP-PSEN1 mice and AD patients. 187 Aβ enhanced the inhibitory GABAergic tonic conductance and decreased the inhibitory postsynaptic current mediated by GABA-A receptors, leading to hippocampal dysfunction. 186,188 Further, AB oligomer disrupted the balance between glutamatergic and GABAergic systems, inducing neuronal hyperexcitation by increasing extracellular glutamate levels, likely through impaired uptake, which heightened glutamatergic activity spontaneous **EPSC** frequency. Simultaneously, Aβ reduced the effectiveness of GABAergic inhibition, as shown by its effects being reversed by the GABA-A receptor antagonist picrotoxin. 157

The interaction between $A\beta$ and GABAergic system has also been studied with GABA receptor modulators. ¹⁸⁹ As for the agonist, chronic stimulation of GABA-A receptors with muscimol showed neuroprotective effects against $A\beta$ -induced neurotoxicity, but this protection was lost when co-treated with the GABA-A receptor antagonist bicuculline. ^{190,191} Similarly, α 5IA, an agonist for GABA-A receptors containing the α 5 subunit, decreased $A\beta$ -induced cell loss and restored the expression change of different subunits in GABA-A receptor. ¹⁹² In AD model mice having GABAergic system deficit, early treatment with gaboxadol, another GABA-A receptor agonist,

could reverse hippocampal neuronal hyperexcitation and mildly restore cognitive function. 186 In addition, A β was shown to inhibit GABA-induced Cl $^-$ current, suggesting another mechanism for A β -induced neuronal hyperexcitation. 193 These investigations clearly highlighted the therapeutic potential of GABA-A receptor agonists against A β -induced impairment.

GABA-A receptor antagonists, such as pentylenetetrazole (PTZ), picrotoxin (PTX), and bicuculline, have been implicated in modulating A β -induced neuronal and cognitive deficits. Research showed that these antagonists can rescue A β -induced LTP deficits, ^{157,194} and restore the morphology and functionality impairment of adult-born granule cells by hAPP. ¹⁹⁵ In particular, prolonged PTX administration prevented memory deficits and mitigated the A β -induced upregulation of postsynaptic density protein 95 (PSD95), GluN2B and GABA-A α 1 subunit in AD mouse models. ¹⁹⁴ However, these therapeutic implications should be interpreted cautiously, given the antagonists can also exacerbate A β -induced seizures ¹⁹⁶ and neutralize the neuroprotective effects of melatonin. ¹⁹⁷

GABA-B receptors

Unlike the GABA-A receptors, GABA-B receptors do not form ion channels but instead influence cells through secondary messengers. These receptors typically function as heterodimers, consisting of GABA-B1 and GABA-B2 subunits, where GABA-B1 binds with GABA and GABA-B2 couples the receptor to G proteins. Activation of GABA-B receptors leads to the inhibition of adenylate cyclase, decreased cAMP levels, and opening of potassium channels, which further contributes to neuronal hyperpolarization. Their modulation of synaptic transmission is vital for controlling neuronal excitability over longer periods compared to the fast-acting GABA-A receptors.

The density and composition of GABA-B receptor were found to be altered in AD mice and human samples. Both postsynaptic and presynaptic densities of the GABA-B receptor were reduced in the hippocampus of AD model mice, ¹⁹⁹ possibly contributing to the cognitive dysfunction associated with AD. On molecular level, a novel noncoding RNA termed 17A, upregulated in AD patients, increased A β synthesis and A β_{42} /A β_{40} ratio.²⁰⁰ 17A also promoted the expression of an alternative GABA-B receptor isoform by altering RNA polymerase splicing. Research showed that human ABPP can interact with presynaptic GABA-B receptor and lead to GABA release inhibition.²⁰¹ Research showed that inhibiting GABA-B receptors could alleviate Aß-induced neuronal toxicity. For instance, the use of GABA-B receptor antagonists, such as CGP35348, has shown promising results in AD models. In a rat model, CGP35348 treatment alleviated memory impairment induced by acute AB toxicity. 202 Similarly, CGP36216, another antagonist acting on presynaptic GABA-B receptor, was able to mitigate the neuronal hyperexcitation induced by hAPP overexpression.²⁰¹ However, researchers found no neuronal protective effect on $A\beta_{25-35}$ -induced toxicity with the treatment of baclofen, a GABA-B receptor agonist. 190 (Table 6).

Conclusion

AD, the leading cause of dementia, is a significant global health challenge with no definitive cure. It is characterized by the pathological accumulation of $A\beta$ and tau, which lead to neural network imbalance, synaptic dysfunction and cognitive decline. Emerging research underscored the critical role of $A\beta$ interactions with neural receptors in exacerbating these pathological processes. While some neuronal receptor-targeted treatments showed promise, the complexity of AD pathology demanded a comprehensive understanding of how these interactions influence disease progression.

This review aimed to highlight existing knowledge on the interactions between AB and neuronal receptors, focusing on the physiological, cognitive, and clinical consequences of receptor-targeted pharmacological interventions. By examining receptor-specific mechanisms —including adrenergic, acetylcholine, dopamine, 5-HT, and GABA receptors—this paper highlighted the potential of targeting receptor pathways to mitigate Aβ-induced pathology. Moreover, the review introduced various receptor manipulations with therapeutic potential, underscoring the necessity for continued research to optimize these strategies for clinical application. Future efforts could focus on understanding the complex dynamics of neurotransmitter receptor-Aβ interactions and developing neural devicebased therapies for AD that modulate receptor activity without disrupting overall neural information processing.²⁰³

Acknowledgements

The authors have no acknowledgments to report.

ORCID iD

Qi Wang (b) https://orcid.org/0000-0001-8656-1439

Ethical considerations

This study was based on previously published data and did not involve any new experiments requiring ethical approval.

Author contributions

Yuhan Nong: Investigation, Writing - original draft, Writing - review & editing.

Jung Soo Kim: Investigation, Writing - original draft, Writing - review & editing.

Litian Jia: Investigation, Writing - review & editing.

Ottavio Arancio: Investigation, Writing - review & editing.

Qi Wang: Conceptualization, Funding acquisition, Investigation, Project administration, Resources, Supervision, Writing - original draft, Writing - review & editing.

Funding

This work was supported by NIH R01AG075114, R01NS119813, and U01AG066722.

Declaration of conflicting interests

Q.W. is the co-founder of Sharper Sense, a company developing methods of enhancing sensory processing with neural interfaces.

Data availability statement

This study did not involve the collection or generation of new data.

References

- Zhao J, Liu X, Xia W, et al. Targeting amyloidogenic processing of APP in Alzheimer's disease. Front Mol Neurosci 2020; 13: 137.
- Anderson JP, Esch FS, Keim PS, et al. Exact cleavage site of Alzheimer amyloid precursor in neuronal PC-12 cells. Neurosci Lett 1991; 128: 126–128.
- 3. Wilson CA, Doms RW and Lee VM. Intracellular APP processing and aβ production in Alzheimer disease. *J Neuropathol Exp Neurol* 1999; 58: 787–794.
- Burdick D, Soreghan B, Kwon M, et al. Assembly and aggregation properties of synthetic Alzheimer's A4/beta amyloid peptide analogs. *J Biol Chem* 1992; 267: 546–554.
- Sherrington R, Rogaev E, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. *Nature* 1995; 375: 754–760.
- De Jonghe C, Esselens C, Kumar-Singh S, et al. Pathogenic APP mutations near the γ-secretase cleavage site differentially affect Aβ secretion and APP C-terminal fragment stability. Hum Mol Genet 2001; 10: 1665–1671.

 Chen W, Gamache E, Rosenman DJ, et al. Familial Alzheimer's mutations within APPTM increase Aβ42 production by enhancing accessibility of ε-cleavage site. *Nat Commun* 2014; 5: 3037.

- Lambert MP, Barlow A, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. *Proc Natl Acad Sci U S A* 1998; 95: 6448–6453.
- Kayed R, Head E, Thompson JL, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. *Science* 2003; 300: 486–489.
- Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. *Nature* 2002; 416: 535–539.
- 11. Wilcox KC, Lacor PN, Pitt J, et al. Aβ oligomer-induced synapse degeneration in Alzheimer's disease. *Cell Mol Neurobiol* 2011; 31: 939–948.
- Tomiyama T, Matsuyama S, Iso H, et al. A mouse model of amyloid β oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. *J Neurosci* 2010; 30: 4845–4856.
- Weiss E, Kann M and Wang Q. Neuromodulation of neural oscillations in health and disease. *Biology (Basel)* 2023; 12: 371.
- Sabatini BL and Tian L. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. *Neuron* 2020; 108: 17–32.
- McCormick DA, Wang Z and Huguenard J. Neurotransmitter control of neocortical neuronal activity and excitability. *Cereb Cortex* 1993; 3: 387–398.
- Delis I, Dmochowski JP, Sajda P, et al. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing. *NeuroImage* 2018; 175: 12-21
- Zheng HJV, Wang Q and Stanley GB. Adaptive shaping of cortical response selectivity in the vibrissa pathway. *J Neurophysiol* 2015; 113: 3850–3865.
- 18. Sharma K, Pradhan S, Duffy LK, et al. Role of receptors in relation to plaques and tangles in Alzheimer's disease pathology. *Int J Mol Sci* 2021; 22: 12987.
- Zhao J, Deng Y, Jiang Z, et al. G protein-coupled receptors (GPCRs) in Alzheimer's disease: a focus on BACE1 related GPCRs. Front Aging Neurosci 2016; 8: 58.
- 20. Clewett D, Huang R, Velasco R, et al. Locus coeruleus activity strengthens prioritized memories under arousal. *J Neurosci* 2018; 38: 1558–1574.
- Totah NKB, Logothetis NK and Eschenko O. Noradrenergic ensemble-based modulation of cognition over multiple timescales. *Brain Res* 2019; 1709: 50–66.
- Rodenkirch C, Liu Y, Schriver BJ, et al. Locus coeruleus activation enhances thalamic feature selectivity via norepinephrine regulation of intrathalamic circuit dynamics. *Nat Neurosci* 2019; 22: 120–133.

- 23. Strosberg A. Structure, function, and regulation of adrener-gic receptors. *Protein Sci* 1993; 2: 1198–1209.
- Slater C and Wang Q. Alzheimer's disease: an evolving understanding of noradrenergic involvement and the promising future of electroceutical therapies. *Clin Transl Med* 2021; 11: e397.
- Chalermpalanupap T, Schroeder JP, Rorabaugh JM, et al. Locus coeruleus ablation exacerbates cognitive deficits, neuropathology, and lethality in P301S tau transgenic mice. *J Neurosci* 2018; 38: 74–92.
- Jacobs Heidi IL, Becker John A, Kwong K, et al. In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer's disease pathology and cognitive decline. Sci Transl Med 2021; 13: eabi2511.
- 27. Manaye KF, Mouton PR, Xu G, et al. Age-related loss of noradrenergic neurons in the brains of triple transgenic mice. *Age (Dordr)* 2013; 35: 139–147.
- 28. Goodman AM, Langner BM, Jackson N, et al. Heightened hippocampal beta-adrenergic receptor function drives synaptic potentiation and supports learning and memory in the TgF344-AD rat model during prodromal Alzheimer's disease. *J Neurosci* 2021; 41: 5747–5761.
- Tamano H, Ishikawa Y, Shioya A, et al. Adrenergic beta receptor activation reduces amyloid beta(1-42)-mediated intracellular Zn(2+) toxicity in dentate granule cells followed by rescuing impairment of dentate gyrus LTP. Neurotoxicology 2020; 79: 177–183.
- Branca C, Wisely EV, Hartman LK, et al. Administration of a selective beta2 adrenergic receptor antagonist exacerbates neuropathology and cognitive deficits in a mouse model of Alzheimer's disease. *Neurobiol Aging* 2014; 35: 2726–2735.
- 31. Wang D, Govindaiah G, Liu R, et al. Binding of amyloid beta peptide to beta2 adrenergic receptor induces PKA-dependent AMPA receptor hyperactivity. *FASEB J* 2010; 24: 3511–3521.
- Li S, Jin M, Zhang D, et al. Environmental novelty activates beta2-adrenergic signaling to prevent the impairment of hippocampal LTP by Abeta oligomers. *Neuron* 2013; 77: 929–941.
- 33. Chai GS, Wang YY, Yasheng A, et al. Beta 2-adrenergic receptor activation enhances neurogenesis in Alzheimer's disease mice. *Neural Regen Res* 2016; 11: 1617–1624.
- Chai GS, Wang YY, Zhu D, et al. Activation of beta(2)-adrenergic receptor promotes dendrite ramification and spine generation in APP/PS1 mice. *Neurosci Lett* 2017; 636: 158–164.
- 35. Jin M, Wei Z, Ramalingam N, et al. Activation of beta(2)-adrenergic receptors prevents AD-type synaptotoxicity via epigenetic mechanisms. *Mol Psychiatry* 2023; 28: 4877–4888.
- Hutten DR, Bos JHJ, de Vos S, et al. Targeting the beta-2-adrenergic receptor and the risk of developing Alzheimer's disease: a retrospective inception cohort study. J Alzheimers Dis 2022; 87: 1089–1101.

- 37. Yu NN, Wang XX, Yu JT, et al. Blocking beta2-adrenergic receptor attenuates acute stress-induced amyloid beta peptides production. *Brain Res* 2010; 1317: 305–310.
- Ni Y, Zhao X, Bao G, et al. Activation of beta2-adrenergic receptor stimulates gamma-secretase activity and accelerates amyloid plaque formation. *Nat Med* 2006; 12: 1390–1396.
- Wu Q, Sun JX, Song XH, et al. Blocking beta 2-adrenergic receptor inhibits dendrite ramification in a mouse model of Alzheimer's disease. *Neural Regen Res* 2017; 12: 1499–1506.
- Zhang F, Gannon M, Chen Y, et al. β-amyloid redirects norepinephrine signaling to activate the pathogenic GSK3β/tau cascade. Sci Transl Med 2020; 12: eaay6931.
- 41. Zhang F, Gannon M, Chen Y, et al. The amyloid precursor protein modulates alpha(2A)-adrenergic receptor endocytosis and signaling through disrupting arrestin 3 recruitment. *FASEB J* 2017; 31: 4434–4446.
- Chen Y, Peng Y, Che P, et al. Alpha(2A) adrenergic receptor promotes amyloidogenesis through disrupting APP-SorLA interaction. *Proc Natl Acad Sci U S A* 2014; 111: 17296–17301.
- 43. Infantino R, Boccella S, Scuteri D, et al. 2-pentadecyl-2-oxazoline Prevents cognitive and social behaviour impairments in the amyloid beta-induced Alzheimer-like mice model: bring the alpha2 adrenergic receptor back into play. Biomed Pharmacother 2022; 156: 113844.
- 44. Gibbs ME, Maksel D, Gibbs Z, et al. Memory loss caused by beta-amyloid protein is rescued by a beta(3)-adrenoceptor agonist. *Neurobiol Aging* 2010; 31: 614–624.
- Tournissac M, Vu TM, Vrabic N, et al. Repurposing beta-3 adrenergic receptor agonists for Alzheimer's disease: beneficial effects in a mouse model. *Alzheimers Res Ther* 2021; 13: 103.
- Yu ZY, Yi X, Wang YR, et al. Inhibiting alpha1-adrenergic receptor signaling pathway ameliorates AD-type pathologies and behavioral deficits in APPswe/PS1 mouse model. *J Neurochem* 2022; 161: 293–307.
- 47. Slater C, Liu Y, Weiss E, et al. The neuromodulatory role of the noradrenergic and cholinergic systems and their interplay in cognitive functions: a focused review. *Brain Sci* 2022; 12: 890.
- Jiang S, Li Y, Zhang C, et al. M1 muscarinic acetylcholine receptor in Alzheimer's disease. *Neurosci Bull* 2014; 30: 295–307.
- Wu J and Lukas RJ. Naturally-expressed nicotinic acetylcholine receptor subtypes. *Biochem Pharmacol* 2011; 82: 800–807.
- Chen GJ, Xiong Z and Yan Z. Abeta impairs nicotinic regulation of inhibitory synaptic transmission and interneuron excitability in prefrontal cortex. *Mol Neurodegener* 2013; 8: 3.
- 51. Santos-Torres J, Fuente A, Criado JM, et al. Glutamatergic synaptic depression by synthetic amyloid beta-peptide in the medial septum. *J Neurosci Res* 2007; 85: 634–648.

- 52. Dougherty JJ, Wu J and Nichols RA. Beta-amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. *J Neurosci* 2003; 23: 6740–6747.
- Borroni V and Barrantes FJ. Homomeric and heteromeric α7 nicotinic acetylcholine receptors in health and some central nervous system diseases. *Membranes* 2021; 11: 664.
- Wang HY, Lee DH, D'Andrea MR, et al. beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. *J Biol Chem* 2000; 275: 5626–5632.
- Cecon E, Dam J, Luka M, et al. Quantitative assessment of oligomeric amyloid beta peptide binding to alpha7 nicotinic receptor. *Br J Pharmacol* 2019; 176: 3475–3488.
- Lasala M, Fabiani C, Corradi J, et al. Molecular modulation of human alpha7 nicotinic receptor by amyloid-beta peptides. Front Cell Neurosci 2019; 13: 37.
- Spencer JP, Weil A, Hill K, et al. Transgenic mice overexpressing human beta-amyloid have functional nicotinic alpha 7 receptors. *Neuroscience* 2006; 137: 795–805.
- Maatuk N and Samson AO. Modeling the binding mechanism of Alzheimer's Abeta1-42 to nicotinic acetylcholine receptors based on similarity with snake alpha-neurotoxins.
 Neurotoxicology 2013; 34: 236–242.
- Ashenafi S, Fuente A, Criado JM, et al. Beta-Amyloid peptide25-35 depresses excitatory synaptic transmission in the rat basolateral amygdala "in vitro". *Neurobiol Aging* 2005; 26: 419–428.
- 60. Liu Q, Xie X, Lukas RJ, et al. A novel nicotinic mechanism underlies beta-amyloid-induced neuronal hyperexcitation. *J Neurosci* 2013; 33: 7253–7263.
- 61. Liu Q, Xie X, Emadi S, et al. A novel nicotinic mechanism underlies beta-amyloid-induced neurotoxicity. *Neuropharmacology* 2015; 97: 457–463.
- 62. Chen L, Yamada K, Nabeshima T, et al. Alpha7 nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in beta-amyloid infused rats. *Neuropharmacology* 2006; 50: 254–268.
- He YX, Wu MN, Zhang H, et al. Amyloid beta-protein suppressed nicotinic acetylcholine receptor-mediated currents in acutely isolated rat hippocampal CA1 pyramidal neurons. *Synapse* 2013; 67: 11–20.
- 64. Hahm ET, Nagaraja RY, Waro G, et al. Cholinergic homeostatic synaptic plasticity drives the progression of abeta-induced changes in neural activity. *Cell Rep* 2018; 24: 342–354.
- Stoiljkovic M, Kelley C, Hajos GP, et al. Hippocampal network dynamics in response to alpha7 nACh receptors activation in amyloid-beta overproducing transgenic mice. *Neurobiol Aging* 2016; 45: 161–168.
- Ju Y, Asahi T and Sawamura N. Arctic Mutant Abeta40 aggregates on alpha7 nicotinic acetylcholine receptors and inhibits their functions. *J Neurochem* 2014; 131: 667–674.
- Fonar G, Polis B, Sams DS, et al. Modified snake alphaneurotoxin averts beta-amyloid binding to alpha7 nicotinic

acetylcholine receptor and reverses cognitive deficits in Alzheimer's disease mice. *Mol Neurobiol* 2021; 58: 2322–2341.

- Soderman A, Mikkelsen JD, West MJ, et al. Activation of nicotinic alpha(7) acetylcholine receptor enhances long term potentation in wild type mice but not in APP(swe)/PS1DeltaE9 mice. *Neurosci Lett* 2011; 487: 325–329.
- 69. Medeiros R, Castello NA, Cheng D, et al. Alpha7 nicotinic receptor agonist enhances cognition in aged 3xTg-AD mice with robust plaques and tangles. *Am J Pathol* 2014; 184: 520–529.
- Ni R, Marutle A and Nordberg A. Modulation of alpha7 nicotinic acetylcholine receptor and fibrillar amyloid-beta interactions in Alzheimer's disease brain. *J Alzheimers* Dis 2013: 33: 841–851.
- Sinclair P and Kabbani N. Nicotinic receptor components of amyloid beta 42 proteome regulation in human neural cells. *PLoS One* 2022; 17: e0270479.
- Tropea MR, Li Puma DD, Melone M, et al. Genetic deletion of alpha7 nicotinic acetylcholine receptors induces an agedependent Alzheimer's disease-like pathology. *Prog Neurobiol* 2021; 206: 102154.
- Dziewczapolski G, Glogowski CM, Masliah E, et al. Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer's disease. *J Neurosci* 2009; 29: 8805–8815.
- 74. Moretti M, Zoli M, George AA, et al. The novel α7β2-nicotinic acetylcholine receptor subtype is expressed in mouse and human basal forebrain: biochemical and pharmacological characterization. *Mol Pharmacol* 2014; 86: 306–317.
- 75. Wu J, Liu Q, Tang P, et al. Heteromeric alpha7beta2 nicotinic acetylcholine receptors in the brain. *Trends Pharmacol Sci* 2016; 37: 562–574.
- Liu Q, Huang Y, Xue F, et al. A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides. *J Neurosci* 2009; 29: 918–929.
- Liu Q, Huang Y, Shen J, et al. Functional alpha7beta2 nicotinic acetylcholine receptors expressed in hippocampal interneurons exhibit high sensitivity to pathological level of amyloid beta peptides. *BMC Neurosci* 2012; 13: 155.
- George AA, Vieira JM, Xavier-Jackson C, et al. Implications of oligomeric amyloid-beta (oAbeta(42)) signaling through alpha7beta2-nicotinic acetylcholine receptors (nAChRs) on basal forebrain cholinergic neuronal intrinsic excitability and cognitive decline. *J Neurosci* 2021; 41: 555–575.
- Grupe M, Grunnet M, Bastlund JF, et al. Targeting α4β2 nicotinic acetylcholine receptors in central nervous system disorders: perspectives on positive allosteric modulation as a therapeutic approach. *Basic Cin Pharmacol Toxicol* 2015; 116: 187–200.

- 80. Dineley KT, Pandya AA and Yakel JL. Nicotinic ACh receptors as therapeutic targets in CNS disorders. *Trends Pharmacol Sci* 2015; 36: 96–108.
- 81. Wu J, Kuo YP, George AA, et al. beta-Amyloid directly inhibits human alpha4beta2-nicotinic acetylcholine receptors heterologously expressed in human SH-EP1 cells. *J Biol Chem* 2004; 279: 37842–37851.
- 82. Salehi B, Sestito S, Rapposelli S, et al. Epibatidine: a promising natural alkaloid in health. *Biomolecules* 2018; 9: 6.
- 83. Olivero G, Grilli M, Chen J, et al. Effects of soluble beta-amyloid on the release of neurotransmitters from rat brain synaptosomes. *Front Aging Neurosci* 2014; 6: 166.
- Roberts JP, Stokoe SA, Sathler MF, et al. Selective coactivation of alpha7- and alpha4beta2-nicotinic acetylcholine receptors reverses beta-amyloid-induced synaptic dysfunction. *J Biol Chem* 2021; 296: 100402.
- 85. Felder CC, Bymaster FP, Ward J, et al. Therapeutic opportunities for muscarinic receptors in the central nervous system. *J Med Chem* 2000; 43: 4333–4353.
- Caccamo A, Oddo S, Billings LM, et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. *Neuron* 2006; 49: 671–682.
- 87. Gu Z, Zhong P and Yan Z. Activation of muscarinic receptors inhibits beta-amyloid peptide-induced signaling in cortical slices. *J Biol Chem* 2003; 278: 17546–17556.
- Janickova H, Rudajev V, Zimcik P, et al. Uncoupling of M1 muscarinic receptor/G-protein interaction by amyloid beta(1-42). *Neuropharmacology* 2013; 67: 272–283.
- Missale C, Nash SR, Robinson SW, et al. Dopamine receptors: from structure to function. *Physiol Rev* 1998; 78: 189–225.
- 90. Hisahara S and Shimohama S. Dopamine receptors and Parkinson's disease. *Int J Med Chem* 2011; 2011: 403039.
- 91. Seeman P and Niznik HB. Dopamine receptors and transporters in Parkinson's disease and schizophrenia. *FASEB J* 1990; 4: 2737–2744.
- Moreno-Castilla P, Rodriguez-Duran LF, Guzman-Ramos K, et al. Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment. *Neurobiol Aging* 2016; 41: 187–199.
- 93. Kumar U and Patel SC. Immunohistochemical localization of dopamine receptor subtypes (D1R–D5R) in Alzheimer's disease brain. *Brain Res* 2007; 1131: 187–196.
- 94. Kemppainen N, Laine M, Laakso M, et al. Hippocampal dopamine D2 receptors correlate with memory functions in Alzheimer's disease. *Eur J Neurosci* 2003; 18: 149–154.
- Cheng Z-Y, Xia Q-P, Hu Y-H, et al. Dopamine D1 receptor agonist A-68930 ameliorates Aβ1-42-induced cognitive impairment and neuroinflammation in mice. *Int Immunopharmacol* 2020; 88: 106963.
- 96. Zang X, Cheng Z-Y, Sun Y, et al. The ameliorative effects and underlying mechanisms of dopamine D1-like receptor

- agonist SKF38393 on Aβ1–42-induced cognitive impairment. *Prog Neuropsychopharmacol Biol Psychiatry* 2018; 81: 250–261.
- Liu X, Cheng Z-Y, Li Y-F, et al. Dopamine D2 receptor agonist bromocriptine ameliorates Aβ1-42-induced memory deficits and neuroinflammation in mice. Eur J Pharmacol 2023; 938: 175443.
- Martorana A, Di Lorenzo F, Esposito Z, et al. Dopamine D2-agonist rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer's disease patients. *Neuropharmacology* 2013; 64: 108–113.
- Sharp T and Barnes NM. Central 5-HT receptors and their function; present and future. *Neuropharmacology* 2020; 177: 108155.
- Hannon J and Hoyer D. Molecular biology of 5-HT receptors. Behav Brain Res 2008; 195: 198–213.
- Carhart-Harris RL and Nutt DJ. Serotonin and brain function: a tale of two receptors. *J Psychopharmacol* 2017;
 1091–1120.
- 102. Eremin DV, Kondaurova EM, Rodnyy AY, et al. Serotonin receptors as a potential target in the treatment of Alzheimer's disease. *Biochemistry (Mosc)* 2023; 88: 2023–2042.
- 103. Vidal B, Sebti J, Verdurand M, et al. Agonist and antagonist bind differently to 5-HT1A receptors during Alzheimer's disease: a post-mortem study with PET radiopharmaceuticals. *Neuropharmacology* 2016; 109: 88–95.
- 104. Mattsson P, Cselenyi Z, Andree B, et al. Decreased 5-HT(1A) binding in mild Alzheimer's disease-A positron emission tomography study. Synapse 2022; 76: e22235.
- Verdurand M, Berod A, Le Bars D, et al. Effects of amyloidbeta peptides on the serotoninergic 5-HT1A receptors in the rat hippocampus. *Neurobiol Aging* 2011; 32: 103–114.
- Truchot L, Costes SN, Zimmer L, et al. Up-regulation of hippocampal serotonin metabolism in mild cognitive impairment. *Neurology* 2007; 69: 1012–1017.
- Verdurand M, Chauveau F, Daoust A, et al. Differential effects of amyloid-beta 1-40 and 1-42 fibrils on 5-HT1A serotonin receptors in rat brain. *Neurobiol Aging* 2016; 40: 11–21.
- 108. Afshar S, Shahidi S, Rohani AH, et al. The effect of NAD-299 and TCB-2 on learning and memory, hippocampal BDNF levels and amyloid plaques in streptozotocin-induced memory deficits in male rats. *Psychopharmacology (Berl)* 2018; 235: 2809–2822.
- 109. Afshar S, Shahidi S, Rohani AH, et al. Protective effects of 5-HT(1A) receptor antagonist and 5-HT(2A) receptor agonist on the biochemical and histological features in a rat model of Alzheimer's disease. *J Chem Neuroanat* 2019; 96: 140–147.
- 110. Wang M, Zong HF, Chang KW, et al. 5-HT(1A)R Alleviates Abeta-induced cognitive decline and neuroinflammation through crosstalk with NF-kappaB pathway in mice. *Int Immunopharmacol* 2020; 82: 106354.

- 111. Marner L, Frokjaer VG, Kalbitzer J, et al. Loss of serotonin 2A receptors exceeds loss of serotonergic projections in early Alzheimer's disease: a combined [11C]DASB and [18F]altanserin-PET study. *Neurobiol Aging* 2012; 33: 479–487.
- Hasselbalch SG, Madsen K, Svarer C, et al. Reduced
 HT2A receptor binding in patients with mild cognitive impairment. *Neurobiol Aging* 2008; 29: 1830–1838.
- 113. Lai MK, Tsang SW, Alder JT, et al. Loss of serotonin 5-HT2A receptors in the postmortem temporal cortex correlates with rate of cognitive decline in Alzheimer's disease. *Psychopharmacology (Berl)* 2005; 179: 673–677.
- 114. Christensen R, Marcussen AB, Wortwein G, et al. Abeta(1-42) injection causes memory impairment, lowered cortical and serum BDNF levels, and decreased hippocampal 5-HT(2A) levels. *Exp Neurol* 2008; 210: 164–171.
- 115. Holm P, Ettrup A, Klein AB, et al. Plaque deposition dependent decrease in 5-HT2A serotonin receptor in AbetaPPswe/PS1dE9 amyloid overexpressing mice. *J Alzheimers Dis* 2010; 20: 1201–1213.
- 116. Lu J, Zhang C, Lv J, et al. Antiallergic drug desloratadine as a selective antagonist of 5HT(2A) receptor ameliorates pathology of Alzheimer's disease model mice by improving microglial dysfunction. *Aging Cell* 2021; 20: e13286.
- 117. Acquarone E, Argyrousi EK, Arancio O, et al. The 5HT2b receptor in Alzheimer's disease: increased levels in patient brains and antagonist attenuation of amyloid and tau induced dysfunction. *J Alzheimers Dis* 2024; 98: 1349–1360.
- 118. Anzalone M, Karam SA, Briting SR, et al. Serotonin-2B receptor (5-HT2BR) expression and binding in the brain of APPswe/PS1dE9 transgenic mice and in Alzheimer's disease brain tissue. *Neurosci Lett* 2025; 844: 138013.
- 119. Baranger K, Giannoni P, Girard SD, et al. Chronic treatments with a 5-HT(4) receptor agonist decrease amyloid pathology in the entorhinal cortex and learning and memory deficits in the 5xFAD mouse model of Alzheimer's disease. *Neuropharmacology* 2017; 126: 128–141.
- 120. Quiedeville A, Boulouard M, Hamidouche K, et al. Chronic activation of 5-HT4 receptors or blockade of 5-HT6 receptors improve memory performances. *Behav Brain Res* 2015; 293: 10–17.
- 121. Giannoni P, Gaven F, de Bundel D, et al. Early administration of RS 67333, a specific 5-HT4 receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5XFAD mouse model of Alzheimer's disease. Front Aging Neurosci 2013; 5: 96.
- 122. Nirogi R, Mohammed AR, Shinde AK, et al. Discovery and preclinical characterization of usmarapride (SUVN-D4010): a potent, selective 5-HT(4) receptor partial agonist for the treatment of cognitive deficits associated with Alzheimer's disease. *J Med Chem* 2021; 64: 10641–10665.

123. Fisher JR, Wallace CE, Tripoli DL, et al. Redundant Gs-coupled serotonin receptors regulate amyloid-beta metabolism in vivo. Mol Neurodegener 2016; 11: 45.

- 124. Pimenova AA, Thathiah A, De Strooper B, et al. Regulation of amyloid precursor protein processing by serotonin signaling. *PLoS One* 2014; 9: e87014.
- 125. Cochet M, Donneger R, Cassier E, et al. 5-HT4 Receptors constitutively promote the non-amyloidogenic pathway of APP cleavage and interact with ADAM10. ACS Chem Neurosci 2013; 4: 130–140.
- 126. Hashemi-Firouzi N, Shahidi S, Soleimani-Asl S, et al. 5-Hydroxytryptamine Receptor 6 antagonist, SB258585 exerts neuroprotection in a rat model of streptozotocin-induced Alzheimer's disease. *Metab Brain Dis* 2018; 33: 1243–1253.
- 127. Ivachtchenko AV, Lavrovsky Y and Ivanenkov YA. AVN-211, novel and highly selective 5-HT6 receptor small molecule antagonist, for the treatment of Alzheimer's disease. *Mol Pharm* 2016; 13: 945–963.
- 128. Shahidi S, Hashemi-Firouzi N, Asl SS, et al. Serotonin type 6 receptor antagonist attenuates the impairment of long-term potentiation and memory induced by Abeta. *Behav Brain Res* 2019; 364: 205–212.
- 129. Hu L, Wang B and Zhang Y. Serotonin 5-HT6 receptors affect cognition in a mouse model of Alzheimer's disease by regulating cilia function. *Alzheimers Res Ther* 2017; 9: 76.
- 130. Rychtyk J, Partyka A, Gdula-Argasinska J, et al. 5-HT(6) Receptor agonist and antagonist improve memory impairments and hippocampal BDNF signaling alterations induced by MK-801. *Brain Res* 2019; 1722: 146375.
- 131. Shahidi S, Asl SS, Komaki A, et al. The effect of chronic stimulation of serotonin receptor type 7 on recognition, passive avoidance memory, hippocampal long-term potentiation, and neuronal apoptosis in the amyloid beta protein treated rat. *Psychopharmacology (Berl)* 2018; 235: 1513–1525.
- 132. Hashemi-Firouzi N, Komaki A, Soleimani Asl S, et al. The effects of the 5-HT7 receptor on hippocampal long-term potentiation and apoptosis in a rat model of Alzheimer's disease. *Brain Res Bull* 2017; 135: 85–91.
- 133. Schoepp DD. Novel functions for subtypes of metabotropic glutamate receptors. *Neurochem Int* 1994; 24: 439–449.
- 134. Marcantoni A, Cerullo MS, Buxeda P, et al. Amyloid Beta42 oligomers up-regulate the excitatory synapses by potentiating presynaptic release while impairing postsynaptic NMDA receptors. *J Physiol* 2020; 598: 2183–2197.
- 135. Muller MK, Jacobi E, Sakimura K, et al. NMDA Receptors mediate synaptic depression, but not spine loss in the dentate gyrus of adult amyloid Beta (Abeta) overexpressing mice. *Acta Neuropathol Commun* 2018; 6: 110.
- 136. Taniguchi K, Yamamoto F, Amano A, et al. Amyloid-beta oligomers interact with NMDA receptors containing

- GluN2B subunits and metabotropic glutamate receptor 1 in primary cortical neurons: relevance to the synapse pathology of Alzheimer's disease. *Neurosci Res* 2022; 180: 90–98.
- Olajide OJ and Chapman CA. Amyloid-beta (1-42) peptide induces rapid NMDA receptor-dependent alterations at glutamatergic synapses in the entorhinal cortex. *Neurobiol Aging* 2021; 105: 296–309.
- 138. Kessels HW, Nabavi S and Malinow R. Metabotropic NMDA receptor function is required for beta-amyloidinduced synaptic depression. *Proc Natl Acad Sci U S A* 2013; 110: 4033–4038.
- Shankar GM, Li S, Mehta TH, et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. *Nat Med* 2008; 14: 837–842.
- 140. Raymond CR, Ireland DR and Abraham WC. NMDA Receptor regulation by amyloid-beta does not account for its inhibition of LTP in rat hippocampus. *Brain Res* 2003; 968: 263–272.
- 141. Kervern M, Angeli A, Nicole O, et al. Selective impairment of some forms of synaptic plasticity by oligomeric amyloidbeta peptide in the mouse hippocampus: implication of extrasynaptic NMDA receptors. *J Alzheimers Dis* 2012; 32: 183–196.
- 142. Back MK, Ruggieri S, Jacobi E, et al. Amyloid betamediated changes in synaptic function and spine number of neocortical neurons depend on NMDA receptors. *Int J Mol Sci* 2021; 22: 6298.
- 143. Shankar GM, Bloodgood BL, Townsend M, et al. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. *J Neurosci* 2007; 27: 2866–2875.
- 144. Tackenberg C, Grinschgl S, Trutzel A, et al. NMDA Receptor subunit composition determines beta-amyloidinduced neurodegeneration and synaptic loss. *Cell Death Dis* 2013; 4: e608.
- Snyder EM, Nong Y, Almeida CG, et al. Regulation of NMDA receptor trafficking by amyloid-beta. *Nat Neurosci* 2005; 8: 1051–1058.
- 146. Hoey SE, Williams RJ and Perkinton MS. Synaptic NMDA receptor activation stimulates alpha-secretase amyloid precursor protein processing and inhibits amyloid-beta production. *J Neurosci* 2009; 29: 4442–4460.
- 147. Bordji K, Becerril-Ortega J, Nicole O, et al. Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ss production. *J Neurosci* 2010; 30: 15927–15942.
- Lesne S, Ali C, Gabriel C, et al. NMDA Receptor activation inhibits alpha-secretase and promotes neuronal amyloidbeta production. *J Neurosci* 2005; 25: 9367–9377.
- Sinnen BL, Bowen AB, Gibson ES, et al. Local and usedependent effects of beta-amyloid oligomers on NMDA

- receptor function revealed by optical quantal analysis. *J Neurosci* 2016; 36: 11532–11543.
- 150. Alberdi E, Sanchez-Gomez MV, Cavaliere F, et al. Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 2010; 47: 264–272.
- Johnson JW and Kotermanski SE. Mechanism of action of memantine. Curr Opin Pharmacol 2006; 6: 61–67.
- 152. Varadharajan A, Davis AD, Ghosh A, et al. Guidelines for pharmacotherapy in Alzheimer's disease–A primer on FDA-approved drugs. *J Neurosci Rural Pract* 2023; 14: 566.
- 153. Xia P, Chen HS, Zhang D, et al. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. *J Neurosci* 2010; 30: 11246– 11250.
- 154. Martinez-Coria H, Green KN, Billings LM, et al. Memantine improves cognition and reduces Alzheimer's-like neuropathology in transgenic mice. Am J Pathol 2010; 176: 870–880.
- 155. Decker H, Lo KY, Unger SM, et al. Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons. *J Neurosci* 2010; 30: 9166–9171.
- 156. Stazi M and Wirths O. Chronic memantine treatment ameliorates behavioral deficits, neuron loss, and impaired neurogenesis in a model of Alzheimer's disease. *Mol Neurobiol* 2021; 58: 204–216.
- 157. Lei M, Xu H, Li Z, et al. Soluble Abeta oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance. *Neurobiol Dis* 2016; 85: 111–121.
- 158. Texido L, Martin-Satue M, Alberdi E, et al. Amyloid beta peptide oligomers directly activate NMDA receptors. *Cell Calcium* 2011; 49: 184–190.
- Verges DK, Restivo JL, Goebel WD, et al. Opposing synaptic regulation of amyloid-beta metabolism by NMDA receptors in vivo. *J Neurosci* 2011; 31: 11328–11337.
- 160. Li S, Jin M, Koeglsperger T, et al. Soluble Abeta oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. *J Neurosci* 2011; 31: 6627–6638.
- 161. Rammes G, Hasenjager A, Sroka-Saidi K, et al. Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of beta-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Neuropharmacology 2011; 60: 982–990.
- 162. Shemer I, Holmgren C, Min R, et al. Non-fibrillar beta-amyloid abates spike-timing-dependent synaptic potentiation at excitatory synapses in layer 2/3 of the neocortex by targeting postsynaptic AMPA receptors. Eur J Neurosci 2006; 23: 2035–2047.

- 163. Zhang Y, Guo O, Huo Y, et al. Amyloid-beta induces AMPA receptor ubiquitination and degradation in primary neurons and human brains of Alzheimer's disease. *J Alzheimers Dis* 2018; 62: 1789–1801.
- 164. Almeida CG, Tampellini D, Takahashi RH, et al. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. *Neurobiol Dis* 2005; 20: 187–198.
- 165. Gu Z, Liu W and Yan Z. beta-Amyloid impairs AMPA receptor trafficking and function by reducing Ca2 +/calmodulin-dependent protein kinase II synaptic distribution. *J Biol Chem* 2009; 284: 10639–10649.
- 166. Guntupalli S, Jang SE, Zhu T, et al. Glua1 subunit ubiquitination mediates amyloid-beta-induced loss of surface alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. *J Biol Chem* 2017; 292: 8186–8194.
- 167. D'Amelio M, Cavallucci V, Middei S, et al. Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease. *Nat Neurosci* 2011; 14: 69–76.
- 168. Whitcomb DJ, Hogg EL, Regan P, et al. Intracellular oligomeric amyloid-beta rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. Sci Rep 2015; 5: 10934.
- Bernareggi A, Duenas Z, Reyes-Ruiz JM, et al. Properties of glutamate receptors of Alzheimer's disease brain transplanted to frog oocytes. *Proc Natl Acad Sci U S A* 2007; 104: 2956–2960.
- Hsieh H, Boehm J, Sato C, et al. AMPAR Removal underlies Abeta-induced synaptic depression and dendritic spine loss. *Neuron* 2006; 52: 831–843.
- 171. Reinders NR, Pao Y, Renner MC, et al. Amyloid-beta effects on synapses and memory require AMPA receptor subunit GluA3. *Proc Natl Acad Sci U S A* 2016; 113: E6526–E6534.
- 172. Fernandez-Perez EJ, Munoz B, Bascunan DA, et al. Synaptic dysregulation and hyperexcitability induced by intracellular amyloid beta oligomers. *Aging Cell* 2021; 20: e13455.
- 173. Hettinger JC, Lee H, Bu G, et al. AMPA-ergic regulation of amyloid-beta levels in an Alzheimer's disease mouse model. *Mol Neurodegener* 2018; 13: 22.
- 174. Piers TM, Kim DH, Kim BC, et al. Translational concepts of mGluR5 in synaptic diseases of the brain. *Front Pharmacol* 2012; 3: 199.
- 175. Um JW, Kaufman AC, Kostylev M, et al. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer abeta oligomer bound to cellular prion protein. *Neuron* 2013; 79: 887–902.
- 176. Hu NW, Nicoll AJ, Zhang D, et al. Mglu5 receptors and cellular prion protein mediate amyloid-beta-facilitated synaptic long-term depression in vivo. *Nat Commun* 2014; 5: 3374.
- 177. Haas LT, Salazar SV, Kostylev MA, et al. Metabotropic glutamate receptor 5 couples cellular prion protein to

intracellular signalling in Alzheimer's disease. *Brain* 2016; 139: 526–546.

- 178. Abd-Elrahman KS, Albaker A, de Souza JM, et al. Abeta oligomers induce pathophysiological mGluR5 signaling in Alzheimer's disease model mice in a sex-selective manner. *Sci Signal* 2020; 13: eabd2494.
- 179. Renner M, Lacor PN, Velasco PT, et al. Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. *Neuron* 2010; 66: 739–754.
- 180. Wang Q, Walsh DM, Rowan MJ, et al. Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-jun N-terminal kinase, cyclindependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. *J Neurosci* 2004; 24: 3370–3378.
- 181. Hamilton A, Vasefi M, Vander Tuin C, et al. Chronic pharmacological mGluR5 inhibition prevents cognitive impairment and reduces pathogenesis in an Alzheimer disease mouse model. *Cell Rep* 2016; 15: 1859–1865.
- 182. Bellozi PMQ, Gomes GF, da Silva MCM, et al. A positive allosteric modulator of mGluR5 promotes neuroprotective effects in mouse models of Alzheimer's disease. *Neuropharmacology* 2019; 160: 107785.
- 183. Everington EA, Gibbard AG, Swinny JD, et al. Molecular characterization of GABA-A receptor subunit diversity within major peripheral organs and their plasticity in response to early life psychosocial stress. Front Mol Neurosci 2018; 11: 18.
- 184. Watanabe M, Maemura K, Kanbara K, et al. GABA And GABA receptors in the central nervous system and other organs. *Int Rev Cytol* 2002; 213: 1–47.
- 185. Limon A, Reyes-Ruiz JM and Miledi R. Loss of functional GABA(A) receptors in the Alzheimer diseased brain. *Proc* Natl Acad Sci U S A 2012; 109: 10071–10076.
- 186. Li Y, Zhu K, Li N, et al. Reversible GABAergic dysfunction involved in hippocampal hyperactivity predicts early-stage Alzheimer disease in a mouse model. *Alzheimers Res Ther* 2021; 13: 114.
- 187. Kelly L, Seifi M, Ma R, et al. Identification of intraneuronal amyloid beta oligomers in locus coeruleus neurons of Alzheimer's patients and their potential impact on inhibitory neurotransmitter receptors and neuronal excitability. Neuropathol Appl Neurobiol 2021; 47: 488–505.
- 188. Calvo-Flores Guzman B, Kim S, Chawdhary B, et al. Amyloid-beta(1-42) -induced increase in GABAergic tonic conductance in mouse hippocampal CA1 pyramidal cells. *Molecules* 2020; 25: 693.
- 189. Nava-Mesa MO, Jiménez-Díaz L, Yajeya J, et al. GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer's disease. Front Cell Neurosci 2014; 8: 167.

- 190. Lee BY, Ban JY and Seong YH. Chronic stimulation of GABAA receptor with muscimol reduces amyloid beta protein (25-35)-induced neurotoxicity in cultured rat cortical cells. *Neurosci Res* 2005; 52: 347–356.
- 191. Paula-Lima AC, De Felice FG, Brito-Moreira J, et al. Activation of GABA(A) receptors by taurine and muscimol blocks the neurotoxicity of beta-amyloid in rat hippocampal and cortical neurons. *Neuropharmacology* 2005; 49: 1140– 1148.
- 192. Vinnakota C, Govindpani K, Tate WP, et al. An 5 GABAA receptor inverse agonist, 5IA, attenuates amyloid beta-induced neuronal death in mouse hippocampal cultures. *Int J Mol Sci* 2020; 21: 3284.
- Sawada M and Ichinose M. Amyloid beta proteins reduce the GABA-induced Cl- current in identified Aplysia neurons. *Neurosci Lett* 1996; 213: 213–215.
- 194. Yoshiike Y, Kimura T, Yamashita S, et al. GABA(A) receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin. *PLoS One* 2008; 3: e3029.
- 195. Sun B, Halabisky B, Zhou Y, et al. Imbalance between GABAergic and glutamatergic transmission impairs adult neurogenesis in an animal model of Alzheimer's disease. *Cell Stem Cell* 2009; 5: 624–633.
- 196. Palop JJ, Chin J, Roberson ED, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. *Neuron* 2007; 55: 697–711.
- 197. Paula-Lima AC, Louzada PR, De Mello FG, et al. Neuroprotection against Abeta and glutamate toxicity by melatonin: are GABA receptors involved? *Neurotox Res* 2003; 5: 323–327.
- 198. Benarroch EE. GABAB Receptors: structure, functions, and clinical implications. *Neurology* 2012; 78: 578–584.
- 199. Martin-Belmonte A, Aguado C, Alfaro-Ruiz R, et al. Density of GABA(B) receptors is reduced in granule cells of the hippocampus in a mouse model of Alzheimer's disease. *Int J Mol Sci* 2020; 21: 2459.
- 200. Massone S, Vassallo I, Fiorino G, et al. 17A, A novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. *Neurobiol Dis* 2011; 41: 308–317.
- Kreis A, Desloovere J, Suelves N, et al. Overexpression of wild-type human amyloid precursor protein alters GABAergic transmission. *Sci Rep* 2021; 11: 17600.
- Almasi A, Zarei M, Raoufi S, et al. Influence of hippocampal GABA(B) receptor inhibition on memory in rats with acute beta-amyloid toxicity. *Metab Brain Dis* 2018; 33: 1859–1867.
- Rodenkirch C, Carmel JB and Wang Q. Rapid effects of vagus nerve stimulation on sensory processing through activation of neuromodulatory systems. *Front Neurosci* 2022; 16: 922424.