Home

Active Research Projects

Neuromodulation of sensory processing

Sensory processing is heavily dependent upon on brain state, which is regulated by several neuromodulatory systems, including the locus coeruleus – norepinephrine (LC-NE) system. As the primary source of NE to the forebrain through widespread projections, the LC regulates many essential brain functions. We use electrophysiology, gene editing, opto/chemogenetic manipulation, and behavioral paradigms, to investigate how LC activity modulates the formation of perception and behavior in both health and disease.

Neural circuitry mediating pupil-linked arousal

Non-luminance mediated changes in pupil size (i.e. changes in pupil size not resulting from changes in ambient luminance) have been increasingly used to index arousal state in human behavior. This is mainly because pupillometry (i.e. measurement of pupil size) is an easy, non-invasive, and inexpensive (thanks to the advances of consumer electronics) procedure. However, the underlying neural mechanisms that allow non-luminance mediated changes in pupil size to be indicative of arousal state remain elusive.

Recent Publication

Transcutaneous cervical vagus nerve stimulation improves sensory performance in humans: a randomized controlled crossover pilot study

Michael Jigo, Jason Carmel, Qi Wang, and Charles Rodenkirch

News

The Lab in Photos...